
www.manaraa.com

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may
be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in
reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly
to order.

University Microfilms International
A Bell & Howell Information Com oany

300 North Z eeb Road. Ann Arbor Ml 48106-1346 USA
313/761-4700 800/521-0600

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.comReproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

Order Number 92S5903

Object-oriented modeling for integrated computer aided process
engineering: A software reuse approach

Mehta, Jaimin A., D.Sc.

Washington University, 1992

Copyright ©1992 by Mehta, Jaimin A. All rights reserved.

U M I
300 N . Z eeb Rd.
Ann A rbor, M I 48106

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.comReproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

WASHINGTON UNIVERSITY

SEVER INSTITUTE OF TECHNOLOGY

OBJECT-ORIENTED MODELING FOR INTEGRATED COMPUTER

AIDED PROCESS ENGINEERING: A SOFTWARE REUSE APPROACH

by

Jaimin A. Mehta

Prepared under the direction of Professor R. L. Motard

A dissertation presented to the Sever Institute of
Washington University in partial fulfillment

of the requirements for the degree of

DOCTOR OF SCIENCE

May, 1992

Saint Louis, Missouri

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

WASHINGTON UNIVERSITY
SEVER INSTITUTE OF TECHNOLOGY

ABSTRACT

OBJECT-ORIENTED MODELING FOR INTEGRATED COMPUTER

AIDED PROCESS ENGINEERING: A SOFTWARE REUSE APPROACH

by Jaimin A. Mehta

ADVISOR: Professor R. L. Motard

May, 1992

Saint Louis, Missouri

There are two major problems in realizing Integrated Computer Aided Pro
cess Engineering (ICAPE) systems and environments: object-oriented modeling of
process engineering data, and integration of the existing stock of software for
process engineering. This research investigates a novel approach based on soft
ware reuse to solve both problems.

The main contribution of this research is a new, software reuse approach to
object-oriented modeling for integration, and a systematic software reuse method
ology called “Reuse for object-orientation” or REO. The currently known object-
oriented modeling methodologies prescribe development of a “universal” model
for the application domain; thus they are practical only for new systems of limited

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

scope. The REO methodology, on the contrary, provides a short-cut for deriving
object-oriented models from the existing stock of software. The past and current
research in software integration have examined the black box approach, wherein
the tool is interfaced with its input and output only, and the glass box approach,
wherein the tool is interfaced with its internal symbols, but used in as-is condition
in its entirety. The REO methodology, on the contrary, provides an approach
wherein only parts of a tool are used in an object-oriented system. Presently, the
REO methodology covers two software components: programming language
descriptions and program descriptions.

The “experimental” subject includes parts of ASPEN, a chemical process
modeling and simulation system, that is over a decade old and has over a quarter
(1/4) million lines of program code. An object-oriented model is derived for this
subject by following the REO methodology, and based on it a prototypical ICAPE
system called “Icape-91” is designed and implemented in an experimental object-
oriented system.

This research has identified and developed a novel approach to software
integration and object-oriented modeling; an approach based on software reuse.
Software reuse is a generalization of software integration. Software reuse can help
in deriving object-oriented models from the existing stock of software. Software
reuse can significantly assist software developers working in the field of ICAPE
and ICAE in general. The successes of this research should motivate develop
ment, aided by REO, of large scale ICAPE systems or environments.

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

© 1992

Jaimin Arunkumar Mehta

ALL RIGHTS RESERVED

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

TABLE OF CONTENTS

Page

List of Tables .. vi

List of Figures .. vii

Acknowledgements .. xii

Chapter

1...........................Introduction... 1

Motivation for R esearch .. 2

P ro b le m ... 4

O u tlin e .. 5

2. Integrated Computer Aids for Process Engineering..................... 8

Computer Aided Process Engineering...................................... 8

Integration Problems .. 9

Process Engineering and Design .. 10

D a t a .. 11

Softw are .. 16

Solving Integration P rob lem s... 17

Existing A p proaches.. 18

The Proto-ICA PE Project Approach 24

Related Research ... 25

S u m m a ry .. 32

iii

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

3. Software Reuse A pproach ... 34

Software Reuse Concepts and IC A P E 34

REO M ethodology.. 40

Model Derivation From Programming
Language D escrip tions.. 43

Model Derivation From Program Unit Descriptions . . . 47

Model Refinement by Sim plification................................. 58

Related Research by O th e rs .. 61

Summary ... 63

4. Icape-91, A Prototypical IC A P E ... 65

Background on ASPEN ... 65

ASPEN Input L an g u ag e ... 67

Scope of Icap e -9 1 .. 69

Integration of ASPEN ... 70

REO for Icap e -9 1 .. 72

REO for In p u t .. 72

REO for Output .. 87

REO for Program ... 87

Design and Implementation in V S M 110

Summary ... 115

5. Conclusions .. 116

C onclusions... 116

C ontributions... 118

Suggestions for Future Work .. 119

iv

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

Appendix

A. Object-oriented Model for Icape-91.. 121

B. VSM Design of Icape-91.. 134

References .. 178

Glossary .. 185

Abbreviations, Acronyms, and Titles ... 185

Terminology of REO M ethodology... 187

Vita .. 189

V

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

LIST OF TABLES

Table Page

2.1 Time Utilization of a Typical Engineer 13

2.2 M ajor Research Projects in ICAE ... 26

2.3 M ajor Research Projects on Object-oriented Applications
in Chemical Engineering ... 31

4.1 Selection of Candidate Program Units 89

4.2 Program Units and the Selected Method of Reuse 92

4.3 Selected Program Units and Their Associated Classes ____ 93

4.4 Classes Associated with Program Units for AP M o d e ls 95

4.5 Classes Derived from the Program Units CLMON1,
CLMON2, and CLMON3 ... 105

vi

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

LIST OF FIGURES

Figure Page

2.1 The Brittleness of Translator-based D ata Integration
between and within Tools ... 15

2.2 The Task of Data Modeling for Existing Software 19

2.3 The CAD Framework Initiative Architecture for Tool
Integration in Electronic CAD .. 21

2.4 Software Reuse Approach of the Proto-ICAPE Project . . . 25

2.5 Post-facto Integration of Database Systems in the
DELI Project ... 30

3.1 Some Approaches to Software Reuse 39

3.2 REO Methodology .. 41

3.3 Association between Production (of Grammar)
and C la s s .. 45

3.4 An Example of Association between Productions
and Classes ... 46

3.5 Procedure for Selecting a PROG Method 50

3.6 Association between Subroutine and C la s s 52

3.7 An Example Application of the CODE Method 55

3.8 Association between the Constructs of Traditional
and Object-oriented Programming Languages 56

3.9 An Example Application of the SORC Method 58

3.10 Application of the SIMP-2 Method to Eliminate
Classes with Only One A ttr ib u te .. 59

3.11 Application of the SIMP-4 Method to Eliminate
Equivalent Classes .. 60

vii

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

3.12 Application of the SIMP-5 Method to Eliminate
Extraneous Class .. 61

4.1 Data Flow Diagram for Simulation using ASPEN 66

4.2 Section of a Sample Input File for ASPEN 68

4.3 A Sample Input for TGS .. 73

4.4 Syntax Specification of Parts of the ASPEN Input
Language for TGS .. 74

4.5 Specification of Some Terminal Symbols in the ASPEN
Input L an g u ag e .. 74

4.6 Application of the LANG Method to the Specifications
in Figure 4.4 and 4.5 ... 76

4.7 Application of the SIMP Methods to the Model Derived
as Shown in Figure 4.6 ... 77

4.8 A Sample Route for Calculating Fugacity Coefficients ------- 79

4.9 A Sample Input for Defining an Option Set 80

4.10 Syntax Specification of Parts of the ASPEN Input
Language for Option Set ... 82

4.11 Application of the LANG Method to the Specifications
in Figure 4.10 .. 83

4.12 Application of the SIMP Methods to the Model Derived
as Shown in Figure 4.11 ... 84

4.13 REO -TG S, An Object Oriented Model of Input
D ata for TGS .. 86

4.14 Some Structural Parts of the REO-TGS Model
for the COMMON B lo c k s ... 96

4.15 D ata Specifications Given in the TGS Program U n i t s 98

4.16 Aggregation of Classes’ Attributes for the Shared
COMMON Blocks in the Program Units 99

viii

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

4.17 Application of the CODE Method to the Program
Unit PL002 ... 100

4.18 Application of the SORC Method to the Program
U nit CLMON1, CLMON2 and CLMON3 102

4.19 Application of the SORC Method to Segments of the
Program Unit C LM O N 1... 104

4.20 Application of the SORC Method to the Program Unit
DFTMON ... 107

4.21 The Result of Applying the DOCU Method to the
Program Unit C A L M O N ... 109

4.22 The Result of Applying the DOCU Method to the
Program Unit T H E R M O ... 110

4.23 A Vsm Module for Icape-91 .. 113

4.24 Design of a GDS for Icape-91 .. 114

A.1 Parts of REO -TG S for PP Tables ... 122

A.2 Parts of REO -TG S for Option Set ... 123

A 3 Parts of REO -TG S for the COMMON Blocks 124

A 4 Parts of REO -TG S for the PP Model Routines 125

A.5 Inter-class Relationship Diagram from PP Tables 126

A.6 Inter-class Relationship Diagram from the
COMMON blocks .. 127

A.7 Inter-class Relationship Diagram from the
PP Model Routines .. 128

A 8 Inter-class Relationship Diagram from Some of
the AP Model Routines ... 129

A 9 Inter-class Relationship Diagram from Some of
the AP Model Routines ... 130

ix

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

A. 10 Inter-class Relationship Diagram from Some of
the AP Model Routines ... 131

A l l Inter-class Relationship Diagram from Some of
the AP Model Routines ... 132

A. 12 Inter-class Relationship Diagram of Utility Objects from
the COMMON Blocks ... 133

B .l Template for design of GDS on the following pages 136

B.2 Design of the GDS mixture_properties 137

B.3 Design of the GDS physicaI_property_system......................... 138

B.4 Design of the GDS universal_constants_collection 139

B.5 Design of the GDS physical_property_equation_set 140

B.6 Design of the GDS physical_property_equation 141

B.7 Design of the GDS physical_property_model 142

B.8 Design of the GDS equation_of_state 143

B.9 Design of the GDS ideal_gas.. 144

B.10 Design of the GDS redlich_kwong ... 145

B .l l Design of the GDS molar_volume ... 146

B.12 Design of the GDS cavett ... 147

B.13 Design of the GDS r a c k e t t ... 148

B.14 Design of GDS for PP model unary parameters 149

B.15 Template for design of vsm modules
on the following pages .. 150

B.16 Vsm Module for the Program Unit PL001 151

B.17 Vsm Module for the Program Unit PL002 152

B.18 Vsm Module for the Program Unit PS001............................... 153

x

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

B.19 Vsm Module for the Program Unit VL001 154

B.20 Vsm Module for the Program Unit VL004 155

B.21 Vsm Module for the Program Unit D V 0 0 1 156

B.22 Vsm Module for the Program Unit DV002 157

B.23 Vsm Module for the Program Unit D V 1 0 1 158

B.24 Vsm Module for the Program Unit D L 0 0 1 159

B.25 Vsm Module for the Program Unit D L 1 0 1 160

B.26 Vsm Module for the Program Unit ES00 161

B.27 Vsm Modules for the Program Units ES01 and ES02 162

B.28 Vsm Module for the Program Unit SIG001 163

B.29 Vsm Module for the Program Unit SIG002 164

B.30 Vsm Module for the Program Unit SIG201 165

B.31 Vsm Module for the Program Unit K V 0 0 1 166

B.32 Vsm Modules for the Program Units KV003 and KV202 . . 167

B.33 Vsm Module for the Program Unit K V 2 0 1 168

B.34 Vsm Module for the Program Unit KL001 169

B.35 Vsm Module for the Program Unit KL002 170

B.36 Vsm Module for the Program Unit KL201 171

B.37 Vsm Module for the Program Unit M U V 0 0 1 172

B.38 Vsm Module for the Program Unit MUV002 173

B.39 Vsm Module for the Program Unit M U V 2 0 1 174

B.40 Vsm Module for the Program Unit MUV202 175

B.41 Vsm Module for the Program Unit MUL001 176

B.42 Vsm Module for the Program Unit MUL002 177

xi

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

Acknowledgements

I thank, foremost, my advisor Rudy Motard for providing me with generous

support, advice, encouragement, and most importantly patience and an unparal

leled environment for independent research. I also thank him for editing my

rather incomprehensible drafts of papers, and for inordinately long loans of

books. I extend my thanks to my doctoral examination committee members for

their advice, suggestions, and stimulating discussions. The questions on design

method from Bill Ball steered me to . . . the end of this dissertation. I also bene-

fitted from discussions with Jim Schaaf. I am grateful to Alvin Larsen from Mon

santo Chemical Company and Barry Flaschbart from McDonnell-Douglas Corpo

ration for being generous with their time despite their busy schedules, and also for

stimulating discussions. I also thank T. D. Kimura with the Department of Com

puter Science for my first introduction to the concepts of object-oriented program

ming. This work would have been incomplete but for the over-extended support

from John Kardos, the Chairman of the Department of Chemical Engineering.

I also thank Yoshio Yamashita for assisting me in learning about the VSM

system that he had developed. My gratitude extends to my colleagues—especially

Dennis Patakas and Guillermo Simari, both of whom have graduated long since—

at the Center for Computer Aided Process Engineering.

My thanks also extend to Bruce Hanna with Ontologic, Inc., for a mighty

package of more than forty publications on object-oriented programming which

he sent me, on his own accord, as a Samaritan’s gift. I also thank Mike Blaha with

General Electric, Corporate R&D, for an introduction to the OMT notation; in

retrospect, I believe the lesson was quite helpful in writing this dissertation.

xii

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

I thank Andy Hazucha and Charu Malik with the Departm ent of English

Literature for prompt help in editing this dissertation.

Finally, I would like to thank all my family and friends for their encourage

ment, support and love. I am grateful to my Dad, Mom, and sibs for their love

and encouragement. I am also thankful to my cousin Amita, her husband Deven,

and my uncle Chandravadan for generous support for my studies in the U.S. To

my friends from IIT Bombay—especially Ashutosh, Arun and Ajay—many a

thanks for reinforcing and sustaining my interest in graduate school. My thanks

also extend to many fellow students at Wash-U, especially Henry Erk and Kapil

Thlwar, for many things.

This work was supported partly in the past by the members of the Center

for Computer Aided Process Engineering, the National Science Foundation under

the grant number DMC-8619162 and CD12-8514513, and the D epartm ent of

Chemical Engineering. This dissertation was prepared on superb software, Techni

cal Publishing Software, from Interleaf, Inc.

xiii

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

1. Introduction

Computer Aided Engineering, hereafter referred to as CAE, is the practice

of engineering and design predicated on computer aids. As a field of study, CAE

is concerned with the development, management and use of computer aids for

engineering and design. One of the unresolved problems of CAE is the “integra

tion” of a huge stock of software and data. This problem is caused by the growing

complexity, heterogeneity, and size of both software that are developed and

managed, and data that are generated and managed. The study pertinent to this

problem will be called Integrated Computer Aided Engineering, hereafter referred

to as ICAE. The desired systems will be called ICAE systems. CAE restricted to

the domain of process engineering is called Computer Aided Process Engineering,

hereafter referred to as CAPE. Similarly, ICAE restricted to the domain of

process engineering is called Integrated Computer Aided Process Engineering,

hereafter referred to as ICAPE.

The problems of integration in CAE have been around since the 1970’s. A

few research groups have studied or attempted to solve them. The attention these

problems receive in mechanical, electrical, and VLSI or electronics engineering

has no parallel in chemical engineering. Less than a few chemical engineering

schools have studied them. The Integrated Program for Aerospace Vehicle Design

project, hereafter referred to as the IPAD project, which was undertaken during

1971-84, is the first major attempt to solve these problems in the aerospace engi

neering domain [Fulton, 1987]. Almost all companies in the aerospace or CAD/

CAM industry participated in the IPAD project; it indicates the significance and

urgency of integration in ICAE.

A project similar to IPAD has not been undertaken in process engineering

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

and would therefore be of world-wide interest. This research project will be

referred to as the “Proto-ICAPE Project.” Though the project is limited in scope,

the expectation underlying it is that the lessons learned will aid and motivate an

undertaking of larger scale project.

1.1 Motivation for Research

The IPAD project resulted in impressive achievements in, and many contri

butions to, the field of CAE; the majority, however, are obviously overshadowed

by the advances of the past decade in many fields of computer science, especially

in object-oriented, database, and software reuse technologies.* Thus, a similar

project of prototypical scale based on new techniques may show better approaches

to development of ICAE systems.

O bject-oriented programming during the last few years has been effecting a

change of paradigm, in the Kuhnian sense,* in the software industry. Originally

object-oriented programming was mainly an amusement, but it has come to influ

ence the fields of database systems [Dittrich & Dayal, 1986], artificial intelligence

programming [Stefik & Bobrow, 1986], programming languages [Saunders, 1989],

operating systems [Jones, 1978], network systems, and lately computer systems and

hardware [Pountain, 1988]. Almost all areas and applications of computer science

are vigorously applying object-oriented technologies. One is thus led to the ques

tion as to how object-oriented programming might affect ICAE and ICAPE.

* The term technology refers to the scientific study of techniques, and scientific
knowledge can help in improving the techniques. The term is not used in the
sense, currently in vogue, of a specific commercial implementations or tools.

* A paradigm is defined by Kuhn [1970] as a fundamental world-view held by
a community of scientists which is eventually replaced by another during the evo
lution of scientific knowledge. For example, the superceding of Newtonian
mechanics by relativistic mechanics is a paradigm shift or a paradigm change in
physics.

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

Database technology has progressed from simple files through hierarchical,

network, and relational approaches to extended relational, and object-oriented

approaches. The area of engineering data management is still being researched,

now with greater interest than before. The complex requirements of engineering

data management cannot be met by Codd’s [1970] “pure” relational approach

despite its simplicity. Thus, many researchers have been studying extended rela

tional and object-oriented approaches. O f the three known and viable approa

ches—relational, extended relational, and object-oriented—object-oriented

approach is widely believed to be the way [Dittrich & Dayal, 1986]. O bject-

oriented approach also shows some promise of acceptable performance for the

domain of engineering (see the 001 benchmark [Cattell, 1991], popularly known as

the Cattell benchmark). For either of the two post-relational database

approaches, extended relational and object-oriented, the essential first step is the

logical design of a database. In the domain of process engineering, more research

is needed in object-oriented modeling for engineering databases.

Software reuse and reverse engineering technologies are relatively new

developments that began in the 1980’s. One of the more widely followed

approaches involves treating the software or tool (engineering or design software

is often popularly referred to as a tool to generate and manipulate data or infor

mation in different forms) of interest as a black box and reusing it in as-is condi

tion. A diametrically opposite approach is to treat the software or tool of interest

as a “glass box” and analyze the segments of its source (segments as small as an

expression in the source language) to develop a new model of the tool [Bachman,

1990]. A more economical approach would be a mix of these antipodal

approaches as will be discussed in Chapter 3. In any case, the current knowledge

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

base lacks in software reuse techniques specifically targeted for object-oriented

environments.

In sum, there is a strong need for research in the application of object-

oriented and software reuse technologies for ICAE and ICAPE; a need also exists

to develop new techniques.

1.2 Problem

There are two major problems in ICAPE, and in general in ICAE: (1) the

management of data for process engineering, and (2) the integration of software

for process engineering. Both can be solved by developing a “common” model for

the domain of process engineering (the phrase “model for domain” summarily

means model of data, knowledge, and activities of the domain), and a model for

the existing software for process engineering. The commonality should span not

only different software that are used for process engineering, but also the domain

of process engineering as well as other disciplines that might be involved in an

engineering or design project.

As regards modeling for a domain, most modeling methodologies com

monly prescribe that one should develop a “universal” model for the domain by

listing all objects and events that occur in the domain. The task entailed, unfortu

nately, is practical only for systems of limited scope, and not for the domain as

extensive as the engagements of a typical engineering and design office. Even for

a domain of modest scope, the problem of developing an object-oriented model

based on the consensus of domain experts can be exceedingly difficult.

As regards modeling for integration of software, which is typically stocked

in a design office, the known object-oriented software development methodologies

have no recommendations for a lack of experience in the matter. The known

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

approaches (these are ad hoc and opportunistic, rather than being based on soft

ware engineering) have many limitations that will be discussed in the next chapter.

In this research a new thesis is advanced: software reuse approach can be

used for object-oriented modeling of both the domain and software for the

domain. This approach is the basis of a new methodology called Reuse for

Object-orientation, hereafter referred to as REO.

One way to “prove” this thesis, perhaps the only way, is by demonstrating

its application in a systems development project. To that end, a prototype ICAPE

system called “Icape-91” has been developed following REO methodology.

Prototyping is a quick, a not-too-expensive, and yet a powerful way to validate

research in design.* From the known literature, the Proto-ICA PE Project is the

first of its kind, as is the prototypical ICAPE system Icape-91. The “experimental”

subject of REO in this project is ASPEN,$ a software system used mainly for

chemical process flowsheet modeling and simulation.

13 Outline

The following is a brief outline of this dissertation. The next chapter dis

cusses in detail the problems of integration in ICAPE and reviews research proj

ects that are similar to the Proto-ICAPE Project. Chapter 3 discusses some

concepts of and approaches to software reuse, and describes the REO methodol

ogy with examples. Chapter 4 describes the development of Icape-91, mainly the

steps of modeling that follows the REO methodology, and briefly a design and

* Is there any other way to validate research in “design”—a practice, not a
phenomenon?

* “ASPEN” stands for “Advanced System for Process Engineering.” The
ASPEN system was developed at M.I.T. during 1976-81 under the sponsorship of
the United States Departm ent of Energy and many industrial participants.

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

implementation. A more extensive model and design is in the Appendixes. The

last chapter summarizes the main conclusions of this research and makes sugges

tions for future studies.

A few asides: It is assumed that the reader knows about the basic concepts

of, and is familiar with, the developments of object-oriented programming and its

applications in many fields. Object-oriented programming is no mystery by now.

The field is too broad for an overview in this dissertation, and a large body of lit

erature is widely available. The best introduction to the subject is in the text

books on SmallTalk-80 by Goldberg and Robson [1983]. For an extensive and

general introduction to the area, see the texts by the following authors: Brad Cox

[1986]; Bertrand Meyer [1988]; Grady Booch [1991]; Rumbaugh, Blaha, Premer-

lani, Eddy and Lorenson [1991]. The seminal ideas on hierarchical program struc

turing as they relate to object-oriented modeling or programming are in the paper

by Dahl and H oare [1972].

In the Proto-ICAPE Project, it is assumed that object-oriented paradigm is

a superior one. The research described in this dissertation is about the means for

reusing the existing stock o f software by turning it into an object-oriented software, not

a study o f the many benefits o f object-oriented programming; the latter has been

investigated and belabored upon by many.

The notation of Object Modeling Technique, hereafter referred to as OMT,

given by Rumbaugh et al. [1991], is used extensively in this dissertation. However,

it is used from a programmer’s viewpoint, in a manner rather different than sug

gested by its developers; for example, if a relationship has no more than one

constituent with “many” multiplicities, then it is modeled as an attribute rather

than let is stand on its own. For a reader who is familiar with object-oriented pro

gramming, the use of the OMT notation in this dissertation is easy to follow.

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

The notion of “object” has been around in computer science long before

the introduction of object-oriented programming through Simula. However, the

idea of object in object-oriented programming is rather different; a t the minimum,

it involves encapsulation, dynamic binding, and inheritance. It is in this sense that

the term “object” is used in this dissertation; and not in the sense of encapsulation

alone.

Reproduced w ith permission of the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

2. Integrated Computer Aids for Process Engineering

8

There are a many computer aids for various tasks in process engineering,

but the majority are complex. It is widely believed that impediments to the

productivity of engineers can be overcome by providing “integrated” tools that are

centered on engineering data management systems. The approach and techniques

described in this dissertation, although the field of their application is process

engineering, are also applicable to other engineering disciplines. Such broad

applicability is important, because process engineering is often part of inter

disciplinary projects typically found in the process plant engineering and construc

tion industry. As stated in Chapter 1, the study pertinent to the problem of

integration of computer aids for engineering will be known as ICAE, and the study

restricted to the domain of process engineering will be known as ICAPE.

This chapter first describes briefly the practice of CAPE. Second, it

discusses in some detail the problems that create the need for integration. Finally,

it reviews related research projects by others, and compares them with the Proto-

ICAPE Project.

2.1 Computer Aided Process Engineering

The term process engineering is used in a rather broad sense to denote var

ious activities such as the synthesis, design, analysis, modeling, simulation, and

process development and the management of these activities. These activities are

carried out under different functions such as process research and development,

process engineering and design, process operations, project engineering, cost engi

neering, etc. Usually they involve a group of people. These are undertaken in

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

varied industries such as refineries, chemicals, pharmaceuticals, pulp and paper,

polymers, semiconductors, specialty and fine chemicals, and metallurgical.

Consequently, the term computer aided process engineering (or CAPE)

denotes process engineering activities that are undertaken through computer aids

packaged as turn-key systems, software systems, software subsystems, libraries (of

compiled program units), databases, information systems, and others. The activi

ties include management or organizational tasks such as production and manage

ment of engineering project data and documents, and coordination and

collaboration with various other networked role-players and subcontractors. In

other words, the major activity of CAPE as a practice should be management of

data and inform ation that are related to process engineering; that this is realized

only to a very small extent is perhaps an accident. The information in question

includes that which belongs to engineering as well as engineering or project

management (for example, vessel diameter and the “freeze date” of project data

respectively).

2.2 Integration Problems

The complexity of tools usually diverts end-users’ attention from the main

task o f generating useful design data and information. Furthermore, the multi

plicity of complex tools has forced many users to choose one tool as a de facto

t The terms data and information are used synonymously to be consistent with
the terminology in the area of database technology. Additionally, a valid argu
ment can be made that information is a kind of data. Information generally
means meaningful data or facts, and “meaning” is interpretation of data. In com
puters, interpretation of data is provided by procedures expressed in computer
languages, and these procedures in turn are data for other procedures. Thus,
data with procedures that interpret the data together constitute information;
some say information is at a level above data.

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

10

standard even though others may be more suitable for certain tasks. Additionally,

one needs tools to effectively manage an enormous amount of complexly inter

dependent data that are generated. In the present state of affairs in the area of

CAPE, the problems of integration fall into the following three categories:

1. At the application level, process engineering activities need to be inte

grated to improve the process of design.

2. At the data level, the variety of process engineering data one uses need

to be integrated in one model for comprehensive and sound management.

3. At the software level, various software tools are neither integrated nor

easy to integrate into a coherent whole.

These are inter-dependent problems. For example, some of the problems of soft

ware integration are due to a lack of data management (shared and centralized

management). This section further elucidates these problems.

2.2.1 Process Engineering and Design

Lately, many researchers and industry leaders have expressed that improve

ments in productivity in engineering and design are possible by eliminating time

lags between various activities and “doing it right the first time.” One way such

improvements might be achieved is by undertaking certain design evaluations

earlier than currently practised, and thereby preventing situations where problems

have to be solved by adding systems and increasing the overall complexity. The

developments in the design of nuclear reactors to provide safety features is well-

known. The new generation of reactor designs such as Process Inherent Ulti

mately Safe, unlike the conventional Pressurized Water Reactor design, are

inherently safe. These new designs use “passive” safety features, such as natural

convection of emergency coolant laced with moderating compounds, that do not

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

11

require activating plant elements to counter failures in operations or of equip

ments [Golay, 1990].

This interest in reorganizing the process of engineering or design by

promoting design evaluation from downstream stages of the design life cycle, gen

erally known as “concurrent engineering” or “simultaneous engineering,” is grow

ing in many engineering disciplines and is being adopted in the industry. In

computer engineering, Gupta et al., [1991] have shown that one can perform reli

ability analysis of computer system design during early conceptual stages of the

design life cycle rather than leave the task until the testing stage. In mechanical

engineering, the study of product design for manufacturability is an active area of

research. In process engineering, there is a growing interest in evaluating safety,

operability, controllability, and other “abilities” of process designs during early

stages in the design life cycle. In chemical or process engineering, the idea of inte

grated engineering—bringing in all engineering and manufacturing expertise to the

task from day one—has been around since the 1960’s under a different name,

Process Systems Engineering [Gundersen, 1991].

The problem of integrating the analysis or design techniques of process

engineering from different stages of process design life cycle is beyond the scope

of the Proto-ICAPE Project and this dissertation. Nevertheless, the brief explana

tion given above is for a reason besides completion’s sake: integration of various

analysis and design techniques in process engineering will eventually create a

demand for integration of respective software and data.

2.2.2 Data

The importance of comprehensive and sound data management in the

operation of engineering and design organizations has been elaborated and

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

belabored by many in the literature on engineering and process engineering

computing [Benayoune & Preece, 1987; Eastman, 1981; Graham & Giambelluca,

1987]. Data management is expected to provide improvements in two critical

success factors: the productivity of engineers, and the quality of engineering data

and “products” (design documents can be regarded as products of engineering).

The cost-benefit analysis used to justify its adoption in the industry is difficult in

the face of poorly quantifiable and usually non-quantifiable advantages, let alone

their valuation. However, other researchers and managers have made cogent

arguments based on various surveys, and a few are summarized below.

A study by Imperial Chemical Industries PLC of chemical process engineer

ing and design estimated that clerical “data pushing” takes about 10% to 70% of

an engineer’s time [Benayoue & Preece, 1987]. In contracting companies, around

35% of an engineer’s time is spent in information handling. A survey performed

by an international oil company suggests that engineers are tied up by data

retrieval and manipulation as shown in Table 2.1 [James, 1984]. Thus, data

management indeed requires at least 50% of engineers’ time. These studies also

highlighted the extreme complexity of relationships that exist within multi

disciplinary environments in project engineering. This complexity exacerbates data

management problems and promotes resignation of project engineers and manag

ers [Graham & Giambelluca, 1987]. Clearly, gains can be achieved in the produc

tivity of engineers by providing necessary tools for information management.

According to Engelke [1987], detailed analysis of engineering changes often

will reveal that up to 50% of all engineering changes are corrections o f errors

rather than changes in requirements. Mismanagement of information will

eventually translate into project delay time, and both keep growing as errors

propagate throughout the organization. The impact of an engineering decision

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

13

tends to increase as a project continues. It is important, then, that all decisions are

good ones and are made at the earliest appropriate time. Thus, it is necessary to

develop techniques and environments that will allow engineers to have quick

access to complete, accurate, and consistent information to improve the quality

and reduce the cycle times of process design, engineering, and development acti

vities.

Table 2.1 Time Utilization of a Typical Engineer

Activity
Percentage of an
Engineer's Time

Data Retrieval 20 - 25

Analysis/Calculation 20 - 30

Data Manlpulatlon/lssue 35 - 40

Planning/Administration 15 - 20

D atabase management systems, hereafter referred to as DBMS’s, were

invented to unify several data files of large size (over gigabytes) or “integrate” data

between various users and end-users. Their function is to maintain the integrity,

consistency, sharability, security and access controls, and availability of data. An

introductory description of these functions can be found in the first few chapters of

the database systems text by Date [1986] and also in the new text by Cattell

[1991].

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

14

File systems may be viewed as the most elementary kind of DBMS’s, but

they lack most of the basic, quintessential functions for data management. The

differences in the definitions of input and output data can be handled by automatic

translators (see Figure 2.1). However, this solution leads to other problems. First,

the effort required to develop such programs, even if based on neutral formats, is

combinatorially expensive; it requires two translators for each pair of views that is

implicit in the two programs. Second, a significant problem is the loss of informa

tion due to a lack of one-to -one mapping between different data definitions and

interpretations. Third, the changes in data definitions that may be required from

time to time would lead to a breakdown of both the translator programs and

communication within the program as depicted in Figure 2.1. (The subprograms

of a program are said to be tightly coupled if, for example, they share data

formats. For more details on the “coupling” and “cohesion” of software design,

see the text by Myers [1978].) The translator-based solution to the problem of

sharing data is well understood and easily implemented for short-term needs, but

in time many such encumbrances can only turn the system into a Rube Goldberg1,

contraption for both the system manager and developer. Blaha [1984] in his

dissertation describes a sour experience of using a file system in lieu of a DBMS.

Since files are based on fixed formats of data organization, Blaha developed

customized programs to read and write data and used editor programs to automat

ically update data that were written and later retrieved by other programs.

However, errors easily crept in due to modification of data in the files (a

t The idiom “a Rube Goldberg” means an incredibly complicated, impractical
scheme or device. It is coined after the American cartoonist Reuben Lucius
(“Rube”) Goldberg [Americana, 1989].

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

15

modification easily done by an end-user through an editing program), and conse

quently the retrieval program “bombed out” (sic).

The file systems were thus replaced by DBMS’s first in the MIS

departments of various organizations. The programs that are integrated with a

DBMS obtain input from, and save output to, databases that are instantiated from

global shared logical models of data; through such a database the programs

communicate and share information. The integration via DBMS’s attracted atten

tion o f researchers in CAE and CAPE; presently, customized file systems are used

instead of DBMS’s.

Inter-tool
translatori

C - t O - A j> Tool C

<< C -to -B ^
Tool A

’idBHs&SiL,?
Tool B Breakdown of translators

between tools

Modified tool B
Breakdown of coupling
within tools

Figure 2.1 The Brittleness of Translator-based Data Integration
between and within Tools

In short, a now commonly accepted principle in CAE and CAPE is that

DBMS’s should be the cornerstone of any organizations engaged in engineering or

design. The major activity of CAPE as a practice, as discussed in Section 2.1,

should be the management of process engineering data or information.

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

2.23 Software

The integration of software is another level of integration in ICAPE. More

generally, one demands integration of various components of software including

specifications, requirements, languages, and documentation.* Software systems are

usually developed as packages dedicated to a specific task or function. However,

the needs of a user or end-user usually cannot be met by a single software system:

different software are used as needed for different functions or performance

requirements. Thus, a need arises to “integrate” one software with another. The

majority of CAD/CAE systems are closed packages: the user is “locked into” the

system, although the user may be required to employ it as a tool only within a spe

cific design methodology, design management practice, or office procedures.

Concurring views are expressed by others. Bushnell [1988] suggests that for

VLSI CAD there are too many languages with too many commonalities beneath

too many differences that are often far too trivial. Cifuentes [1987] has indicated

that software for process modeling is too rigid and not easy to interface with other

software, at least for programmers other than the original developer. According

to Gadient [1987], the most fundamental problem in Integrated Computer Inte

grated Manufacturing is software integration, especially that of the existing stock.

The best summary of this problem, true to this day, is stated by Terry Winograd

[1979] as follows: “The main activity o f programming is not the origination o f new

* The Prentice-Hall Standard Glossary o f Computer Terminology [Edmunds,
1985] states the following definition: “The program that makes a computer sys
tem function. Software consists of the operating system, all sorts of procedures,
routines, specialized programs, including translators and utility programs. Soft
ware includes application programs as well. Software includes all related docu
mentation, including manuals and instruction material.”

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

17

independent programs, but in the integration, modification, and explanation o f existing

ones [italics in original, underlined mine]” (p. 392).

The problems of software integration are non-trivial and multifaceted.

Some are attributable to a lack of data sharing or exchange between two different

but related software. Others are attributable to differences in languages, run-tim e

environments, user interfaces, standards incorporated, and requirements (for

example, batch versus interactive or incremental systems). Unfortunately, the

problems of integration are intermingled with the complexities of software, a lack

of modularity, and difficulties in modification. To make matters worse, the major

ity of software are not developed through sound and formal practice: almost all

are crafted.

The general approach to solving every problem associated with software

integration is on a case-by-case basis and by employing various new and old

tricks. One is then left with no new knowledge that can be applied to new prob

lems, or the trick itself may cause a new set of problems at a later time—once

again, leading one to a world of Rube Goldbergian contraptions.

In sum, the problems with integrating software are complex and inter

dependent. They are not solved by a simple “joining” of two black boxes (that is,

merely by connecting their elements) and certainly not through data integration

alone.

2 3 Solving Integration Problems

O f the three levels of integration in ICAPE discussed in the preceding sec

tion—applications, data, and software—the focus of this research is on the last

two. This section explores different ways of solving the problems of data and soft

ware integration. First, this section examines the shortcomings of the existing

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

18

approaches. Next, it describes briefly a new approach that is first proposed and

adopted in the Proto-ICA PE Project.

23.1 Existing Approaches

Engineering data has many peculiar characteristics unlike those of business

or commercial data. Thus the database technology (relational database systems1,

superceded hierarchical and network database systems) that was developed for the

business or commercial world was unadaptable for engineering [Blaha, 1984; Bray,

1987; Deltz, 1988; Fulton, 1987; Patakas, 1988]. Since the 1980’s, extensive

research has been undertaken in object-oriented and extended relational database

technologies for engineering applications [Cattell, 1991; Joseph, Thatte, Thom

pson and Wells, 1991; Silberschatz, Stonebraker and Ullman, 1991]. As part of

this research project, a review of post-relational approaches—extended relational

and object-oriented—from ICAPE perspective is given by Mehta and Patakas

[1988]. Although object-oriented database technology is researched and devel

oped to a lesser extent than relational database technology, some object-oriented

database management systems have demonstrated superior performance on certain

benchmark problems [Cattell, 1991]. It is safe to assume that ICAE systems will

be predicated on object-oriented database systems; at least, some ideas of object-

oriented programming will take hold.

O f interest in this research is the first step in the design of an object-

oriented database: object-oriented modeling. The analysis phase of all data mod

eling methodologies starts with documented and/or undocumented knowledge of

the subject domain. Such an approach will be referred to as the “modeling from

scratch” approach. For instance, Chen’s entity-relationship modeling involves

t For a comprehensive text on relational database systems, see Date [1986].

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

19

identifying various physical or abstract entities and their relationships in the “real

world.” In object-oriented modeling, one of the objectives is to generate a classi

fication scheme for objects. But there are potentially numerous principles of clas

sification that may be used in modeling. Booch [1991, p.138] gives an interesting

example based on research in conceptual clustering: for a mere “toy problem” of

classifying ten trains, the modelers came up with ninety-three (93) different classi

fications! One can only imagine the difficulties one would face in modeling a

domain as extensive as process engineering and allied fields, and the complexities

of testing the models at that. On the other hand, for ICAE the currently available

large stock of software raises doubts regarding the economics of modeling from

scratch, given the difficulties in economic quantification and valuation in software

engineering. The current situation is depicted in Figure 2.2. An economical alter

native would be modeling based on the existing stock of software (see the graphi

cal arrow comprised of tiny circles in the center of Figure 2.2). Such an alternative

is developed in this research and discussed in subsequent sections.

Existing stock of
software

Systems development
in the past

0 Short-cut
0 exists?

ICAE systems with
object-oriented

databases

Domain Object-oriented model
for databases

latabasej

Modeling (includes testing
and validation) from scratch

Figure 2.2 The Task of Object-oriented Modeling of Data for
the Existing Stock of Software

Reproduced with permission of the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

20

Presently, researchers in CAE view the problem of software integration as

one of tool integration and the focus is only on implementations of software. An

important development during the last few years is that of the CAD Framework

Initiative architecture in VLSI design [Harrison, Newton, Spickelmier and Barnes,

1990].t As shown in Figure 2.3, it consists of a tool integration environment—

encompassing tool integration interfaces; services for user interfaces, versions, data

representation, and data management; design and methodology management

services—for the tool developers and CAD system integrators. Of particular

interest in this tool integration environment is the foreign tool interface. With the

help of this foreign tool interface, a tool views the input and output files in its

internal formats while the data is being managed by the framework. In many

cases, the foreign tool interface treats the entire input or output data as a single

data record in a format that is native to the tool (also known as “stranger” data);

otherwise, it translates data between the two representations in the framework and

the tool. The limitation of this unit is that it facilitates integration only through

the input and output of the tool, not any “deeper.” For example, if the foreign

tool is a batch system, then one is tied to its batch nature; this is a serious liability

considering that the current generation of software are interactive.

An alternative approach has been proposed and developed by Yamashita

[1986], which he calls “heterogeneous integration.” The essential idea is based on

an analogy to integration of heterogeneous hardware; the integration is viewed as

a problem of converting data or “messages” (this is not related to the concept of

messages in object-oriented programming) with the help of data converters. The

t Framework represents a collection of mechanisms at various levels of abstrac
tion for software systems integrators. The role it plays in application develop
ment is analogous to that of an operating system.

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

21

idea of tool integration in VSM is to map messages between tools or program

units with the help of “mapping objects” which function analogous to the alluded

data converters.*

T o o l
Integration
Environment

Tool

Tool Foreign Tool
Interface

Methodology
Management

Services

Design
Management

Services

Tool Integration Interface

Operating System

User Interface
Services

Version
Services

Data Mgmt.
Services

Data Representation
Services

Figure 2.3 The CAD Framework Initiative Architecture for Tool
Integration in Electronic CAD

Virtual Stack Machine, hereafter referred to as VSM, is a system that is

based on this analogy and related ideas [Yamashita, 1987]. According to Yama-

shita [1986], in VSM one treats a subroutine or another kind of program unit as

an object, and various data in the list of arguments as messages. This view is in

stark contrast to the common knowledge that a program or routine in conven

tional imperative languages is analogous to a method in object-oriented languages

* This analogy between software integration and hardware integration is mis
leading, because it does not account for the true problems of software integra
tion. In software integration, the major difficulties involve complexities o f data
handling before and after a particular program is executed, not communication
during execution.

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

22

(a m ethod is applied to the objects that correspond to the shared or parameter

data). In fact, the view of subroutine in VSM as an object makes no departure

from conventional programming, so one does not achieve the benefits of object-

oriented programming; this view is valid only from a software development, not an

application domain perspective. As an example, consider a system for matrix

operations. The association should be between subroutines and methods, subrou

tine calls and messages, matrix data and matrix objects; the view in VSM, however,

associates subroutines with objects and matrixes with messages to these objects

(although, methods are objects at meta-level).

This difference of viewpoints is important if the goal is to develop objects

for users who are domain experts. Moreover, merely mapping data and code in

the foreign tool to objects and methods in VSM will not lead one to true

object-orientation and concomitant benefits. Consider, for instance, the case

wherein an existing graphics editor is integrated in VSM but the user is prevented

from defining new classes of objects because certain parts, specifically the driver

routines of the editor program, used in as-is condition will not accept new types of

data— a legacy of old design decisions that are said to have considered all possible

types of data. Is the resulting system object-oriented? It is only partly object-

oriented because it fails to deliver on the expected benefits, least of all allowing

the user to define new data type. It is object-oriented only in an illusory sense,

because the data and code are “wrapped” into objects and methods. However, if

the “hard-w ired” driver routines are replaced or somehow modified dynamically,

then the resulting system can be made truly object-oriented in the sense that it

would accept new user-defined datatypes or subclasses.

Almost all researchers in systems integration strongly affirm, often dogmati

cally, the following black box principle: thou shall not “open” the program or

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

23

software. In the same vein, the principle underlying VSM is that the program or

software should not be altered. This principle will be referred to as the non

modification principle. The adherence to, and stated import of, such principles by

their proponents is dogmatic because many questions about their relevance and

costs—such as under what conditions should they be followed, what are the tasks

entailed, and others—are not even raised, let alone answered. The fact that a

program unit, which is a part of the software being integrated, provides certain

necessary functions in the old software does not imply that it should be integrated

in as-is condition or integrated at all. If the program is rather complex, then its

integration may turn into a bane for the system integrator. Even if the mecha

nisms for integration are simple, the total required effort of programming may be

too large if the program is complex. Interestingly, the proponents of such princi

ples are none other than the users of generally proprietary tools which the user

wishes to integrate. The black box and non-modification principle need not be

followed by the software manufacturer or vendor; the vendor may choose to

modify its own software to ease integration.

In sum, the current approaches to object-oriented modeling of data and

approaches to software integration have many limitations. As regards data model

ing, any methodology that prescribes “modeling from scratch” for a large engi

neering domain is rather impractical and economically unattractive. As regards

software integration, any approach based on strict adherence to either the black

box or the non-modification principle has many disadvantages and will not provide

m ost of the basic, quintessential, and significant benefits of the object-oriented

paradigm.

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

24

2.3.2 The Proto-ICAPE Project Approach

A new approach, which is based on software reuse, to integration in ICAPE

is proposed and also developed in this research. It takes one closer to both the

object-oriented paradigm and the primary goal o f integration: to impose coherence

or commonality on data, code, junctions, interfaces, and other elements o f the existing

stock o f software.

The study of techniques for reusing existing software for new systems is the

subject m atter of software reuse f a field in computer science that has had increas

ing interest since the 1980’s. Further discussions of concepts and techniques are

deferred until the next chapter. The two approaches discussed above, the black

box approach and that of VSM, are reduced to special cases of reusing only the

implementations of software.

A software package usually consists of components for different domains.

Some components model the application domain (Winograd calls it the subject

domain [1979]), some model the communications domain, some model the domain

of man-m achine interaction, and some model other domains. Any ICAE software

involves domains from the following three areas: specific engineering discipline,

general engineering, and software engineering. The primary concern in ICAPE

should be the components for the domain of process engineering; those from other

domains may be discarded in lieu of better and newer alternatives from other

sources. For example, in the software to be integrated, one may discard all com

ponents for the domain of man-machine interaction if the user interface is built

from old technologies. In short, the components that model different domains

should be reused independently and differently.

t The term was first coined by M. D. Mcllroy at a 1968 NATO conference.

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

25

The main thesis demonstrated in this research is the following: techniques

for software reuse can be adopted for object-oriented modeling for both data and

software integration (see Figure 2.4). The next chapter presents a systematic

methodology based on this thesis. As a demonstration, a prototype ICAPE system

called Icape-91 is developed. Icape-91 consists of software for the domain of

process engineering from the existing stock. The discussions on its development

follow that on the new methodology. Details of the prototype development are

discussed in the chapter after next.

Existing stock
of software . Parts of

implementation

Software reuse

Object-oriented model

Object-oriented ICAPE

Figure 2.4 Software Reuse Approach of the Proto-ICAPE Project

2.4 Related Research

Many ICAE projects have been undertaken and are being conducted in var

ious engineering disciplines, but only one is reported in chemical engineering lit

erature. Only a handful, rather than all, of ICAE projects are reviewed in this

section. The ones briefly reviewed and contrasted with the Proto-ICA PE Project

are listed in Table 2.2.

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

26

Table 2.2 Major Research Projects in ICAE

Name Domain Place
Contrast with the

Proto-ICAPE Project

IPA D A e r o s p a c e E n g in e e r in g
a n d M a n u fa c tu r in g

B o e in g C o m p a n y , S e a t t l e O ld t e c h n o lo g ie s .

(b y R a n d y
K a tz)

V L SI D e s ig n U n iv e rs i ty o f C a lifo rn ia ,
B e rk e le y

A b la c k b o x a p p r o a c h t o I n te g ra t io n .

U ly s s e s V L SI C h ip D e s ig n C a r n e g ie M e llo n U n iv e r s i ty ,
P i t t s b u r g h

A l - b a s e d a n d a b la c k b o x a p p r o a c h
t o I n te g ra t io n .

DELI S o f t w a r e D e v e lo p m e n t M C C , A u s tin D if fe re n t d o m a in .

P R O C E D E C h e m ic a l E n g in e e r in g T h e U n iv e rs i ty o f L e e d s C o n s id e r s t h e p r o b le m a s t h a t o f
s p e c i f i c s o f tw a r e , n o t In I ts g e n e r a l
t e r m s . R e s u l t : a " p a c k a g e , n o t
k n o w le d g e o r c o n c e p t s .

IPAD

The vision behind the IPAD project for aerospace engineering design and

manufacturing carried out from 1971 to 1984 is one of the motivating factors

behind the Proto-ICA PE Project. One of the objectives of IPAD is to share data

in a global database between the conceptual design, final design, drafting, and

manufacturing processes. The list of functions supported by IPAD has much in

common with a typical desiderata of engineering information management in other

disciplines. It includes multiple views of data, multiple levels of data descriptions,

data definition modification, geometry data management, configuration manage

ment, metadata management and other functions. Being the first of its kind, its

aim was in part to establish the functional requirements of an engineering data

management system.

Despite its broad influence on the engineering and manufacturing industry,

the IPAD project had some shortcomings. Being an initiative from users, it was

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

27

driven by needs rather than proven, s ta te-of-the-art technology. For instance, it

relied on distributed operating systems which were not available at that time and

had to be custom developed. From today’s standpoint, the software technologies

that were used in IPAD are certainly old and overshadowed by many advances in

the past decade. One can find no mention of object-oriented programming which

became popular in the 1980’s. Although the IPAD project advanced the imple

mentation of relational DBMS technology for engineering by including repeating

groups such as vectors and matrixes for data types, it made no contribution to the

theoretical aspects of logical design (that is, the logical design of relational data

bases extended with vectors and matrixes). Even databases with multiple data

models were developed along implementation, but not along theoretical lines;

these efforts are now overshadowed by research in heterogeneous, federated, and

other multidatabase technologies. On the whole, the IPAD project was largely

development and little research.

By Randy Katz

Amongst all projects in engineering schools, one of the most comprehensive

undertaking of design management systems is by Randy Katz at the University of

California, Berkeley. Katz [1984] has written extensively on various information

management needs of CAD systems based on his analysis of the design processes

in diverse areas such as VLSI chip, piping systems, architecture, etc. Katz devel

oped a prototypical design management system based on a semantic data model

for design data, a nested-transaction model, and mechanisms to interface with

CAD tools.

Katz describes various functions of a design information management sys

tem and problems that deserve attention in its development. His writings,

however, provide scant description of techniques to reuse the large amount of

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

28

existing software. In contrast to Katz’s research, the focus of the Proto-ICA PE

Project is more on software integration and data modeling rather than design

management systems.

Ulysses

Ulysses is a VLSI design environment that was developed at Carnegie Mel

lon University by Bushnell [1988]. Bushnell has developed techniques for auto

matic execution of specific CAD tools, in order to ease the management of design

tasks that become difficult due to the multiplicity of tool-specific languages. The

tool integration facility in Ulysses views a tool as a black box: the interface accepts

output file(s) in the output language(s) and generates input file(s) in the input

language(s) of the tool that is integrated.

The limitations of the black box approach to tools are discussed in Section

2.3.1. The approach is acceptable in VLSI CAD since the tools have formal

languages for both input and output. This is rarely the case in other other engi

neering disciplines; a majority of process engineering software, including simu

lators, might require input in a specific language, but the outputs are merely

formatted text files in no known formal language. Unlike Ulysses, the Proto-

ICAPE Project is largely concerned with data modeling and tool integration; it is

not concerned with design management or design methodologies since there are

very few design methodologies in process engineering. Another difference

between the two is that Ulysses uses production systems (popularly known as

expert systems) to integrate tools, but Proto-ICAPE Project does not.

DELI

An interesting project in software engineering is in progress at MCC (Micro

Electronics and Computer Technology Corporation), Austin, Texas, under the

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

29

Software Technology Program. This research proposes and develops what the au

thor calls “post-facto integration” techniques to reuse large, heterogeneous sys

tems with a minimum of reprogramming [Power, 1990]. The general idea of

post-facto integration is to create a fixed abstract interface model for program

mers and a mapping between it and the target system to be integrated.1- Figure 2.5

illustrates an application of the post-facto integration to database systems. DELI

presently consists of object models created by employing post-facto integration to

window systems, database systems, and text file editors [Powers, 1990]. This

research aims at providing automation tools and methods to support post-facto

integration of software modules in different programming languages, run-tim e

environments, and operating systems. Post-facto integration is proposed and pur

sued as a distinct area of research, which is highly commendable.

The goal of post-facto integration is the closest to that of the Proto-ICAPE

Project. There are, however, no reports on the details of a systematic methodol

ogy for post-facto integration. The mere idea of an abstract interface model as

depicted in Figure 2.5 provides little guidance in deriving the model; perhaps,

model derivation is left to the programmer’s art. The results therefore cannot be

transferred to other domains and perhaps other systems. Additionally, there are

no reports on the application of post-facto integration techniques to any tradi

tional engineering domains.

PROCEDE

PROCEDE is a process engineering design environment (for a hardware

environment consisting of desktop compuers) in development at The University of

t The notion of pre-facto and post-facto integration is confusing. As the term
pre-facto integration is oxymoronic, so the qualifier post-facto is redundant; any
problem of integration is after the fact.

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

Leeds, UK [Preece & Stephens, 1989]. The approach is to treat an application

program as a black box, completely closed, and secondary to the activity of manag

ing data in files or “databases” (the authors consider files as databases!). The

authors give an example wherein an input file for a process simulator is generated

from a flowsheet schematics program, after which an equipment design application

is invoked, and then a PID is edited; the integrated programs are treated as black

boxes. Their paper presents criticisms about the idea of employing data manage

ment systems based on poor performance of systems at that time. The conclusions

of this paper lists various systems and subsystems that are included: two grades of

printers, four operating systems, two process simulation programs, and two word

processors.

Unix files

a Relational DBMS

interface

mapping

an Object DBMS
Object Store

Interface

Figure 2.5 Post-facto Integration of Database Systems in the DELI Project

Although the scope is impressive, the result of this research is simply a

“package deal” rather than concepts, principles, and methodologies. There are no

new results that are easily transferred to other systems and applications. The criti

cisms of poor performance advanced by the authors on DBMS’s are no longer

valid, considering the advances in the last few years. In PROCEDE, data

exchange techniques such as “clipboard,” “dynamic data exchange,” and others,

are considered more useful than DBMS’s for performance reasons. This argument

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

31

is weak in many ways. A DBMS is more than a means of exchanging data: it

manages integrity, security, consistency, sharing, availability (in a distributed

DBMS), and other functions which are of paramount importance when a database

is used by many people and becomes the centerpiece of an organization. On the

whole, the authors have not grasped the basic advantages, let alone the long-term

benefits, of a data management system.

Others

In chemical engineering, others too have undertaken substantial application

of object-oriented programming and deserve an examination. None, however, is

aimed at integration, let alone software reuse, as in the Proto-ICAPE Project.

TWo such projects listed in Table 2.3 are briefly discussed below.

Table 2.3 Major Research Projects on Object-oriented Applications in
Chemical Engineering

Name Place
Contrast with the

Proto-ICAPE Project

D E S IG N -K IT M a s s a c h u s e t t s I n s t i tu te of A l - b a s e d e n v ir o n m e n t fo r p r o c e s s
T e c h n o lo g y , C a m b r id g e e n g in e e r s

A S C E N D C a r n e g ie M e llo n U n iv e rs ity , A im s t o p ro v id e e q u a t lo n a l m o d e lin g
P i t t s b u r g h e n v iro n m e n t

DESIGN-KIT is an object-oriented environment that is designed to

support modeling of declarative and procedural knowledge in process engineering

[Stephanopolous, Johnstone, Kriticos, Lakshmanan, Mavrovouniotis, and Siletti,

1987]. The Proto-ICA PE Project, on the other hand, is concerned with data and

procedures in the “conventional” sense; that is, no Al-based software are included.

As regards object-oriented modeling, the authors seem to have followed ad hoc

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

32

and intuitive object modeling. For example, thermal characteristics of unit-

operation are modeled as objects in their own right [Stephanopolous et al., 1987].

The subclasses include adiabaticity, isothermalilty, and such. However, an exami

nation of almost any relevant software in process engineering shows no separate

data structure(s) for thermal characteristics; in fact, the adiabaticity of any process

is usually denoted simply by a value of real data type. (In certain systems such as

SmallItilk-80, such real values are objects in their own right; but that is a different

matter.) Unless one is developing a conceptual model, one need not create a class

for thermal characteristics—it does stand on its own as a concept— since there is

apparently no benefit in terms of programming effort. In general, the goals of

ICAPE and the Proto-ICAPE Project are vastly different and have little in com

mon with research in DESIGN-KIT.

ASCEND is another major application of object-oriented concepts to equa-

tional modeling in progress at the Engineering Design Research Center [Piela,

Epperly, Westerberg & Westerberg, 1991] of Carnegie Mellon University, Pitts

burgh. However, equational modeling and computation facilities in ASCEND are

suitable only for the development of new process models, a goal that is rather dif

ferent from that of the Proto-ICAPE Project.

2.5 Summary

Some of the problems with the present day CAPE software systems, the

problems that created the need for integration in CAPE, can be classified as

belonging to one of three levels: application, data, and software. In this chapter,

the existing approaches to solve them are discussed, and the Proto-ICAPE Project

is presented as a new alternative.

Some of the major research projects in ICAE are examined for a potential

Reproduced with permission of the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

33

solution or motivation for ICAPE. The previous attempts in ICAE take a black

box approach to tool integration. Only the DELI project in progress at MCC

attempts some software reuse by creating a common model of target systems to be

integrated. The Proto-ICA PE Project is different from these projects in two

im portant aspects. First, unlike all projects except the one at the University of

Leeds, the domain of Proto-ICAPE Project is process engineering. Second, the

software reuse approach to derive object-oriented models from existing software is

its most important contradistinction.

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

3. Software Reuse Approach

34

The previous chapter advanced the thesis that software reuse can be

adopted for object-oriented modeling for data and software integration in ICAPE.

To this end, a systematic methodology called Reuse for Object-orientation (REO)

is developed and is the main subject of this chapter.

This chapter consists of three sections. First, it discusses some concepts of

software reuse and examines approaches to reuse from the standpoint of ICAPE

requirements. Second, it describes in detail, along with examples, the REO meth

odology. Finally, it reviews related research by others. The next chapter discusses

the development, which follows this methodology, of a prototypical ICAPE system.

3.1 Software Reuse Concepts and ICAPE

The field of software* reuse has been active since the early 1980’s [Bigger-

staff & Perlis, 1984], but more so now, as indicated by the recent formation of the

Subcommittee on Reverse Engineering under the Technical Committee on Soft

ware Engineering of the IEEE Computer Society. By employing software reuse,

one can increase the return of investment in the old software as well as reduce the

cost of development of a new, equivalent system that uses different, perhaps new,

concepts. There are two areas of study under software reuse: (1) reuse of old soft

ware in new and different software, and (2) software reusability. In the latter, reus

ability is the desired property of software (to be developed) and the goal is to find

systems and languages that improve the reusability of software. (It can be argued

f The term software refers not only to the final product, but to the collection of
all related documents—products in the form of data, programs, and descrip
tions— generated at various milestones throughout the product life cycle. (See
the footnote on page 6.)

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

35

that reusability is not an inherent property of software, because clearly reusability

depends on the techniques of reuse.) In the former, on the other hand, the pri

mary goal is reuse of old software. Repeat: one is for developing reusable soft

ware, and the other to reuse developed software.

Software reuse of the former kind, using the old for the new, is of primary

interest in ICAPE and ICAE. Henceforth, for a lack of a suitable alternative

term, the term “software reuse” will be used in the sense of reusing old for new,

not reusability. In the presence of a paradigm change, software reuse is a rather

difficult problem because it cannot be solved through language-to-language trans

lation. As an analogy, consider the problem of parallelization of software for

parallel computers; new algorithms are still developed and considered more worth

while over compilers for parallelization. In any case, given the expected benefits

of an object-oriented paradigm, it is worth investing in developing techniques that

can assist in software reuse.

An aside: One of the main impediments to progress in this area is from the

legal standpoint of potential infringement on copyrights and patents. Nonetheless,

reverse engineering one’s own software is legal. Thus, the field of software reuse

is of immense technological interest to various organizations that would like to

undertake reuse of the software they own. As regards the Proto-ICAPE Project,

the experimental subject is in the public domain. In the area of computer soft

ware, in general, there is inconsistency in many legal cases, and no definite legal

test has been developed so far [Kinne & Kappes, 1992],

There are two types of reuse techniques, virgin and processed, depending

on whether or not the software component being reused is subjected to any of the

processes of software development. (The term software component refers to a

product, which is in the form of a document, that is generated by one or more

Reproduced w ith permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

36

software processes that are part of software development life cycle. A typical life

cycle of software product consists of the following stages: requirements, specifica

tions, design, implementation, testing and maintenance. Hereafter, a software

component is often referred to simply as the component. Do not confuse this use

of the word component with its use to mean a chemical component in subsequent

chapters.) In virgin reuse techniques, a software component is used in as-is condi

tion, in its virgin or as-is form, requiring only declarations of references and access

paths. One example of a virgin reuse technique with which even amateur pro

grammers are familiar is that of a subprogram call in which routines from a library

(of compiled routines) are referenced. In this example, software components from

the implementation and perhaps tested phase are reused without subjecting them

to one or more software development processes. There are many techniques for

virgin reuse of software components from the implementation stage. Virgin reuse

techniques are of no interest in this research.

In processed reuse techniques, a software component is not used in its origi

nal form, but after subjecting it to one or more software development processes; in

other words, the software component’s use requires programming beyond mere

declaration of references and access paths. There are two aspects of processed

reuse techniques: the nature of processing and the kind of software component

(the kind of software component refers to the stage of the software development

life cycle). For example, the processing of components might consist of analysis to

derive a model based on different concepts. The components of interest are mod

ules and programs (that are implemented and tested), requirements, specifications,

design, and even various manuals. These components are generated in the form of

data files, programs, and manuals during various processes in the software devel

opment life cycle.

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

37

Software reuse should not be mandatory, since techniques may not exist or

the subject may be too complex. In the existing literature, there are no definite

guidelines by which one can decide when or how to reuse software. Thus, more

research is needed.

Software reuse may be approached in more than one way. In the new

paradigm, one may create software with equivalent, extended, or different func

tions from the old; the old software system will be referred to as the subject soft

ware system, or simply as the subject of reuse processes and methods. Some of the

software reuse approaches are defined by Bachman [1990] as follows: (1) redevel

opment means to re-create the system (component) requirements and develop the

system (component) in terms of new concepts; (2) reengineering means to re-create

the system (component) specifications in terms of new concepts from information

in the existing system (component) implementation, also known as reverse engineer

ing, and then design, implement and test the equivalent new system (component),

also known as forward engineering. Between the two phases of reverse engineering

and forward engineering, one may enhance the specifications to meet new require

ments. Another set of definitions is given as follows [Chikofsky & Cross, 1990]:

“(1) reverse engineering is the process of analyzing a subject system to identify its

components and their interrelationships, and to create representations of the sys

tem in another form or at a higher level of abstraction; (2) reengineering is the

examination and alteration of a subject system to reconstitute it in a new form and

subsequently implement it in the new form—it generally includes some reverse

engineering followed by some forward engineering or restructuring; (3) restructur

ing is the transformation from one form of representation to another at the same

relative abstraction level, while preserving the subject system’s external behavior—

its functionality and semantics.” This set of definitions is not as complete as that

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

38

given by Bachman; for instance, in the above definitions it is not clear what is

m eant by “reconstitute it in a new form.” Hereafter, the terms will be used in the

sense defined by Bachman.

Different approaches to software reuse are shown in Figure 3.1. In the

redevelopment approach (SI in Figure 3.1), an equivalent software system for the

new paradigm is developed afresh from requirements that are obtained by direct

or processed reuse from the old. This approach is no more economical than

developing software from scratch, because the major costs of software develop

m ent are incurred after the requirements stage. It is not a good choice for ICAPE

because the amount of software that one has to cover is simply enormous.

In the reengineering approach (S2 in Figure 3.1), the extent of reuse is

greater than in the redevelopment approach. However, forward engineering—

consisting of all processes in software development after specifications: design,

implementation, coding, testing—is necessary, and the work required and costs

incurred are comparable to development that starts afresh from requirements (as

in SI in Figure 3.1). If software tools for reverse engineering are available or can

be developed, then reengineering is more economical than redevelopment. This

approach, for ICAPE, requires one to forward engineer an enormous amount of

software; additionally, the task of testing systems made of millions of lines of code

(the typical size of any useful ICAPE system) is rather costly.

In another approach, reengineering plus virgin reuse (S3 in Figure 3.1),

components from the old implementation are reused in virgin or as-is condition in

addition to reverse engineering to generate requirements and specifications. This

approach saves substantial costs of implementation, and more importantly, testing

of software. Some testing may be required for validating integration, but a lot of

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

39

domain-specific testing is eliminated. This approach fits well with the technolog

ical need of ICAPE, namely, reusing existing implementations.

!%n.
OLD NEW

testing

implementation

design

specification ® s M m

2o>® o>w crequirement

X' lilt
S1 S2

Redevelopment Reengineering Reengineering
plus virgin reuse

S3

A Software Product in Approaches to Reuse
Terms of Its Development

Life Cycle Legend
1771 reused components
i m virlgln reuse
w m processed reuse

Figure 3.1 Some Approaches to Software Reuse

Summarily, there are three approaches to software reuse to migrate the

existing software base to different concepts or a new paradigm in decreasing order

of cost: reengineering, redevelopment, and reengineering plus virgin reuse. For

object-oriented modeling for integration in CAPE, reengineering with virgin reuse

is clearly the most economical approach.

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

40

3.2 REO Methodology

The derivation of object-oriented models for subject software systems

(which are not object-oriented) can be aided by following a systematic methodol

ogy.1- As shown in Figure 3.2, starting with the subject and knowledge about its

application domain, one generates an object-oriented model that provides a basis

for object-oriented system(s). The part or whole of the subject software system

that is reused is said to be covered by REO. Often there are no formal require

ments, specifications, or design for the software system; instead, one is left with

informal descriptions in various manuals. The domain knowledge input is for vali

dation or elaboration of semantics; however, its role is rather informal. REO is

not a method of design that would lead one to a definite, particular solution; in

other words, a lot depends on the decisions taken by the programmer or

designer. As shown in Figure 3.2, REO consists of two distinct processes: reverse

engineering and virgin reuse of the subject’s components. For a particular compo

nent, both processes may be required. The components that should be covered

include those that constitute the “universe of discourse” of software engineering

such as requirements, specifications, program unit descriptions (of either the

source or object level), and language descriptions.

An aside: Automation tools can be developed for some parts of REO meth

odology to improve the productivity of programmers and the quality of ICAE proj

ects. This requires formalization of REO methodology that is beyond the scope of

this research. Also note that the majority of potential subjects of REO, software

for specific engineering disciplines, are not result of formal processes or of formal

nature. Similarly, domain knowledge is not formalized for most areas; none is

1 A systematic methodology means a system of concepts, principles, and tech
niques to solve problems.

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

reported for process engineering, and one is unlikely to be developed in the near

future. Thus, total automation does not seem feasible at this time.

An object-oriented model is said to be fully defined if the public and pri

vate sections of each class (the unit of modularity in object-oriented programs) are

fully defined. For example, if some of the class or instance methods are not

defined or specified (for they may require objects that are unknown at the time),

then such a model is not complete. The object-oriented model generated by

reverse engineering has incompletely defined operations; but with virgin reuse, one

can move closer to a complete model. The resulting model can be used in the

development of database models, AI systems, ICAPE systems and other software.

Z , a software system

code base
777 >T AP|S

requirements J
specifications#

language definitions

domain knowledge

manuals

modules

areas of contribution
of the Proto-ICAPE

virgin reuse PROG LANG

reverse engineering

SIMP

object-oriented model(s)

object-oriented system(s)
ex. lcape-91

reengineering
Project

Figure 3.2 REO Methodology

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

42

The virgin reuse of components from the implementation stage, also known

as code, is through modules. A module refers to a program unit that can be sepa

rately edited, compiled, debugged, and in effect replaced with another in the

executable system; usually modules are statically, not dynamically, linked and

loaded to create an executable program. The subject may already have a set of

modules; otherwise, new modules are developed to interface with either the sub

ject, or its subsystems, or both. The virgin reuse of other kinds of components,

such as langauge definitions, requirements, and specifications, might be useful but

is not required in the Proto-ICA PE Project.

The reverse engineering of software involves three steps: (1) selection, (2)

derivation, and (3) refinement. The first step is the selection of components that

can or should be reused; for example, the input and output language descriptions

can be reused and so may be selected for reuse. The second step is the derivation

of object-oriented models from the selected components. The third step is the

simplification of the derived models. The following three sets of methods, each

discussed in detail in separate sections later, are used for derivation and simplifica

tion steps:

1. LANG for reusing programming language descriptions. If it is required

that the subject be unaltered and interfaced only with its input and output, then

the LANG method is applied (presently, this set consists of only one method that

is also named LANG) to derive object-oriented models for the input and output

of the program. One can derive most of the structural, and some of behavioral

parts of the object-oriented model.

2. PROG for reusing program unit descriptions. If reusing individual pro

gram units of the subject is permitted (there may be constraints imposed that pre

vent reuse of a program unit) or required, then the PROG methods are applied to

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

43

derive object-oriented models of the program units; presently, only program units

implemented in FORTRAN are covered, because of the limited scope of this

project.

3. SIMP for refinement by simplifications. The object-oriented models

derived by application of the LANG and PROG methods have redundancies (in

the structure and code) from the perspective of object-oriented programming.

Thus, the SIMP methods are applied to simplify the derived model.

3.2.1 Model Derivation From Programming Language Descriptions

First, a short background and some terminology. The syntax of program

ming language is described in a notation called “context-free grammar”1, or

Backus Naur Formalism. The productions of such a grammar can be classified as

terminal or non-terminal. The terminal production has only terminal symbols on

the right side. The non-terminal production has at least one non-term inal symbol

on the right side. A production consisting of only one non-terminal or terminal

symbol on the right side will be referred to as unary production. Accordingly, a

production with exactly one terminal symbol on the right side (for example, X :: =

Y) will be referred to as a terminal unary production. The derivation methods

would be simpler for a single production rather than a group of productions, so it

is recommended to write every group of productions as individual productions.

For instance, the production, “X :: = Y {A \ B),” should be written as three

1 A grammar consists of a set of terminal symbols, a set of non-terminals, a
set of productions, and a start symbol. A production consists of a non-term inal,
a “- > ” or = ” sign, and a sequence of terminal symbols and non-terminals.
The part preceding the arrow sign is known as the left side of the production, and
that which follows the arrow sign is known as the right side of the production. In
the Extended Backus Naur Formalism notation, curly brackets are used to denote
repetition of non-terminals, and a vertical bar (“ | ”) to group productions with
the same non-term inal on the left side.

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

44

productions, “X ::= 7,” “X ::= Y A ,” and “AT ::= 7 5 . ” The production, “X ::= /I

| 5 ,” should be rewritten as three productions, “AT:: = e,” (a production with an

empty right side) “AT:: = A ,” and “X :: = 5 .”

The LANG method consists of developing an object-oriented model for the

grammar (of the input or output language of the program) based on the associ

ation shown in Figure 3.3 between a production and a class or a class instantiation.

A terminal unary production is associated with an instantiation of a class which in

turn is associated with the non-terminal on the left side. A non-terminal produc

tion is associated with a class, a non-terminal on the right side with an attribute of

that class, and a repetition of non-terminals with an array of attributes of that

class. As regards naming classes and attributes, the programmer or designer may

follow any naming scheme, but “domain-friendly” names are preferred. One sim

ple rule is to adopt the syntactic variable name for the non-terminal on the left

side of the production for naming the associated class; additionally, to distinguish

different productions that have the same non-terminal, the variable name may be

suffixed with a number. Another simple rule is to use a cue from the right side of

the production; for example, if the right side consists of two non-terminals, the

class name may be prefixed or suffixed with the word binary. The terminal symbols

that are keywords, operators, constants, identifiers, literal strings, and punctuation

symbols of the language are implicitly part of the class associated with the produc

tion; thus, no separate slots (in the class) are required for them. These terminal

symbols in non-terminal productions are omitted from modeling consideration.

Based on this association between the concepts of grammar productions and class,

an object-oriented model can be derived. The definitions of operations or meth

ods on objects can be developed from the semantics of the language, semantics

which are usually given by informal descriptions and examples. The classes in the

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

45

resulting model are similar to pre-fabricated parts used to build a parse tree; thus

one can include operations for generating and analyzing sentences to integrate the

program through its input and output.

For terminal unary productions patterned as

X (non-terminal) ::= Y (terminal)

non-terminal X * ■ class X

terminal symbol Y instance Y of X

For non-terminal productions patterned as

X (non-terminal) ::= Y (non-terminals & terminals)

non-terminal X on the left side ■

the right side denoted by Y

non-terminal on the right

terminal symbol that is not
a keyword (on the right)

terminal symbol that is not
a keyword (on the right)

class X

class Y, subclass of X

attribute of Y

attribute of Y

omitted (because it is
redundant)

Figure 3.3 Association between Production (of Grammar) and Class

As an example application of the above method, consider a “toy” language

called ARITH for arithmetic expressions. (This example is based on Example 4.2

in Compilers, Principles, Techniques, and Tools by Aho, Sethi and Ullman [1986]).

Figure 3.4 shows the derivation of an object-oriented model from the production

rules of a grammar for ARITH. The terminal unary productions with op on the

left side and the arithmetic operators on the right side, denoted by terminal sym

bols, are associated with instantiations of class operator, for example, the terminal

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

46

unary production with + on the right side is associated with an instantiation of the

class operator. The non-term inal productions are associated with classes related to

expression; for example, the first production with expr op expr as the right side is

associated with the class binary.

expr expr op expr.

(expr)expr

expr - expr

expr

o p

op

Production Rules
of ARITH

(operator)(operator)

1as instantiation

expression

operator

(operator)

Ident
expr

bracketed

expr
negated

exprl
op
expr2

binary

2as class (syntactic Object-oriented model for structurally
structure) related data for ARITH language

Figure 3.4 An Example of Association between Productions and Classes

The LANG method can be easily adapted for processing descriptions of

form -based languages. A (textual) form consists of hierarchically structured

nam ed fields and values. The field names can be associated with non-terminals,

and the values with terminal symbols.

The resulting object-oriented model is related to syntactic categories o f the

language and is useful for integrating the program through its input and output.

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

47

Such a model is of little interest to domain experts who are interested in objects

and operations of arithmetic, not categories of syntactic structures. Nonetheless,

the resulting model can be pruned to meet such domain-specific, non-linguistic

requirements by simply omitting the unnecessary classes.

3.2.2 Model Derivation From Program Unit Descriptions

The processed reuse of a set of inter-dependent program units of a soft

ware system proceeds through three steps. First, one identifies the candidate

program units for reuse. Second, one selects the candidate program units for

reuse and the method of reuse. Third, one applies the chosen method of reuse to

the selected program unit. The discussions below first cover a few simple, prelimi

nary steps and then the specific reuse methods.

The first step, identifying the candidates, requires a program structure dia

gram for the subject. (The program structure diagram represents the call depen

dencies between program units of any software system.) The candidate program

unit is the program unit that is reached during the execution of the program from

a chosen starting node of a program structure diagram. Identifying candidate

program units starting from a chosen node(s) is easily done by examining the refer

ences to other program units in the relevant object codes. The selection step

requires a high-level function definition consisting of two parts, preferably stated

in single words: the name of the action performed, and the names of data modified

or referenced. An object-oriented model should not distinguish between input

and output (this distinction stems from a functional view of the world), since

particular inputs or outputs are merely messages to and from object(s) in certain

state. The function definition may be proposed based on the informal description

in domain-specific terms in the manuals or source code. Based on this function

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

48

definition, a program unit may be classified as relevant, bridge, or irrelevant. The

relevant program unit is the program unit that modifies or references the objects in

the model under development (the model under development is like a “running

total”). The bridge program unit is the program unit needed to transfer the control

of execution from one relevant program unit to another by virtue of its being on a

path connecting the two. The irrelevant program unit is that which is neither a rele

vant nor a bridge program unit. The relevant and bridge program units are

selected for reuse, and the irrelevant program units are discarded.

Ideally, formal documents are generated at various software development

life cycle stages such as requirements, specifications, and design. Processed reuse

techniques are developed for them. However, the practice of software develop

ment is rather different from this ideal; one often finds software with no formal

requirements, specifications or design, as in this Proto-ICAPE Project. Thus, tech

niques of processed reuse are developed only for the documents found in practice.

The first step is to associate a (selected) program unit with one or more of the

existing classes from the object-oriented model, failing which one creates a new

class and derives its structure and dynamics specifications. Next, one associates the

program unit with methods, attributes, and message expressions. Realize,

however, that these associations are secondary to those with class(es). In the final

result, different parts or abstractions of the program unit are represented in the

object-oriented model.

The processed reuse of program units can be undertaken in REO by apply

ing one of the following methods:

1. CODE method, in which the code itself is directly reused; thus, it

requires less effort for development. The overall cost of a project is reduced, but

the code complexity may make it difficult to apply this method.

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

49

2. SORC method, in which the (object) code itself is not reused; instead,

the segments of a source program are separately reverse engineered for the

object-oriented model.

3. DOCU method, in which neither the source nor (object) code is reused.

Instead, the natural language descriptions of the processing in the program unit

are rewritten in terms of the objects from the model and the messages to these

objects.

The selection of one of these three reuse methods is based either on techni

cal or non-technical considerations or both. The procedure used to select a

method is shown in Figure 3.5. The non-technical considerations, such as

economics and management, are complex enough to warrant a separate study.

One may also impose revocable constraints from project management consider

ations such as early prototyping; for example, reverse engineering of a source

form, which takes more effort than direct reuse, may not be immediately required

in which case the CODE method is applied. The selection may also be based on

prior experience in reusing different program units. Some of the technical consid

erations are as follows:

1. A bridge program unit is reused by the DOCU method because its inter

nal program and data structures are of no interest.

2. A relevant program unit may not be reusable in its compiled form

through the CODE method due to various constraints imposed by the designer; for

example, there may be constraints that prohibit including particular data.

3. A relevant program unit may be rather complex in its source form when

applying the SORC method. (Complexity of code can be evaluated by some soft

ware metrics, or subjectively by a visual scan by the programmer.) In that case,

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

50

candidate? no

yes

bridge?relevant?
no no

yes
yes

no

yes

reuse source
description?

no

yes

reuse description
^ in manuals? ^ no

yes

high-level descripi
(requirements)

ion

object-oriented
model

reuse compiled
description?

design

CODE

SORC

DOCU

Note:

• indicates end

Figure 3.5 Procedure for Selecting a PROG Method

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

51

one can only work with the higher-level descriptions or specifications for which

the DOCU method is applicable.

CODE

The CODE method of processed reuse of a program unit is based on the

similarities between the concept of program in traditional imperative languages

and the concept of method and class in object-oriented languages. A program is a

means to update data, and a method (for a class or an instance of a class) is a

means to update the state of object(s). A program is a construct, the only con

struct, to model a concept or task in the problem domain; and a class is an object-

oriented construct for the same purpose.

The association between subroutine and class is shown in Figure 3.6. A

subroutine is associated with a class and a method; a class may be associated with

m ore than one subroutine because a class is a collection of “related” methods.

The invocation of a subroutine is associated with the invocation of the correspond

ing method. The input, output, or shared variables are associable with either

instance variables, or class variables, or global variables. A class is said to be asso

ciable with a subroutine if every object that represents the parameters and shared

variables of the subroutine can be accessed from an instance of the class; or, in

other words, if all the necessary data for the subroutine are reachable from the

instance of the class. If none of the existing classes is associable, then new classes

are created as follows: one class for the set of input variables, one for the set of

output variables, and one for each shared variable.

The data specification statements (neglect the EQUIVALENCE state

ments1- and such repeating specifications in other program units) are adapted for

1 EQUIVALENCE statement is a data specification construct in FORTRAN.

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

52

the class such that each variable in the list of variables is associated with an attrib

ute of the class. The organization of data, the data specified through different

statements, may be related. Such relationships are not explicitly stated because of

a lack of suitable constructs in FORTRAN or other programming languages.

However, the relationship information is implicit in the source code since an algo

rithm follows structure; also informal descriptions are usually found in the manu

als. For example, data in two different COMMON blocks in FORTRAN

subroutines may be ordered by the same key values, but the relationship cannot

be explicitly stated in FORTRAN; however, the relationship can be inferred from

the pattern of access in one or more source programs. The data type declarations

of variables are adapted in the object-oriented model; that is, they are rewritten in

terms of classes that correspond to the data types.

subroutine

subroutine

subroutine body

subroutine call

actual arguments

formal arguments

common block

class

method

method body

message

message data,
values of instance variables, or
values of class variables

method arguments,
instance variables, or
class variables

global variables,
instance variables, or
class variables

Figure 3.6 Association between Subroutine and Class

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

53

The dynamics of class include methods from four categories of events

involving the program unit (the CODE method is used in conjunction with the vir

gin reuse method through a module interface):

1. the assignment of data or objects to attributes that are associated with

shared variables in the program unit;

2. the assignment of data to attributes that are associated with the

param eters of the program unit;

3. the linking of objects with the symbols in the codet in a form that is

native to the program unit (for example, contiguously laid data for COMMON

blocks); and

4. the calling of the module that interfaces with the code, and thereby

updating an instance of the associated class.

In addition, one should specify constraints on the order of executing these meth

ods. For example, the methods from the above categories 2 and 3 (preparation of

data or objects, and linking the compiled form of the program) are executed

before those from category 4 (calling the program); similarly, the execution of

methods from categories 1 and 2 (preparation of data or objects) should precede

the execution of method from category 3 (linking the program).

As an example, consider a subroutine shown in Figure 3.7 for computing

the viscosity of a pure liquid at low temperatures using a modified Andrade corre

lation. A class named andrade and a method named update are associated with the

subroutine MUL001. The class structure specification consists of attributes for

input and output parameters, as well as the COMMON blocks. The aggregate of

* The method for linking data objects with symbols for COMMON block or
shared variables depends on the linking facility in the target system. Note that
static linking places many limits on interactive computing. Nowadays, dynamic
linking and loading is commonly found in many experimental operating systems.

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

54

subroutine param eters T, IDX, NCP, etc., is modeled by the class mixture for input

param eters and mixturejproperty for the output parameters. The definition of this

class is easily derived from the type and size specifications of data that are readily

available in the source code or program manuals. A module named and.rade_up-

date is created to interface with the subroutine code. The following methods are

created to model events involving MUL001:

1. attach, to attach an instance of class global to the attribute global for the

COM M ON block GLOBAL;

2. similarly, attach, to attach an instance of class ncomp to the attribute

ncomp for the COMMON block NCOMP;

3. assignCOMMON, to assign data from objects held at attributes global

and ncomp to symbols for COMMON blocks GLOBAL and NCOMP, respectively;

4. mixture, to assign data to attributes associated with the input param eters

to the subroutine; and

5. update, in which the module andrade_update that interfaces with

MUL001 is called to update the instance of andrade.

In addition, constraints on the order of executing these methods are specified.

Clearly, an invocation update must be preceded by at least one invocation of assi

gnCO M M ON and mixture. Note that the two events, call to the subroutine

MUL001 and update of its (input, of course) parameters, are decoupled into two

methods update and mixture. The execution of methods named attach must even

tually be followed by that of assignCOMMON (since there are new data for the

COM M ON blocks).

SORC

The SORC method for processed reuse is based on the association between

the constructs (for data and control structuring) of traditional and object-oriented

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

programming languages. For example, the case statement of traditional program

ming languages is used for type-dependent sections of a program. In object-

oriented languages, such a program unit can be represented by an object of the

type collection; this object collects the ones that represent different case blocks.

The advantage in object-oriented language is that this collection can change dur

ing run-tim e.1'

andrade

muland : muland
global : global
ncomp : ncomp
mixt : mixture
mullq : mlxture_property

) a t t a c h f g : g lo b a l)
g c o n s i s t s o t d a t a to r G L O B A L

I) a t t a c h (n : n c o m p)
n c o n s i s t s o t d a t a to r N C O M P

a s s lg n C O M M O N f)
link s u i t a b l e r e p r e s e n t a t i o n s o f
o b j e c t s t o s y m b o ls fo r C O M M O N
b lo c k s

m lx tu r e (m)
m c o n s i s t s o f d a t a fo r s u b r o u t in e
p a r a m e t e r s

u p d a t e !) » fo r M U L001
c a l l a n d r a d e .u p d a t e

3 ,4 b e f o r e 5
1 ,2 m u s t b e fo llo w e d b y 3

class for MUL001

Figure 3.7 An Example Application of the CODE Method

t M ore precisely, in languages without dynamic binding, the control flow con
structs such as IF-TH EN -ELSE and GO TO statements are the only constructs
to handle type-dependent code. Thus, one has to edit, compile, and relink the
program unit (which is part of a statically linked program) whenever a new data
type is defined. This is a classic example of the shortcoming that is overcome
through object-oriented languages.

S U B R O U T IN E M U L001 IDX, N D S

C O M M O N /M U L A N D /X M U L A N (5 ,1)
C O M M O N /G L O B A L /K P F L G 1 , K P F L G 2,
C O M M O N /N C O M P /N C C . N N C C

R E T U R N
E N D

MUL001: a FORTRAN subroutine source

c

/ (vsm_module) \
I andrade_update J

virgin reuse: module to
interface with MUL001 method for

MUL001

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

56

This association between constructs of traditional and object-oriented

languages is shown in Figure 3.8; based on it one derives the structure of the asso

ciable class(es) from the source form of a subroutine (the distinctions between a

main program, subroutine, and function subprogram are irrelevant). A case

statement is associated with a collection of instances of classes for the case blocks,

also known as “the arms of a case statement.” The case labels (GOTO labels in

FORTRAN) are associated with key values that index the collection. An

assignment statement is associated with a method to update an object (or an

assignment statement, if provided by the target object-oriented language, with the

message expression on the right side) that represents the variables on the left side

of the assignment. Similarly, a subroutine call is associated with an update

message to an object that represents the updated data in the subroutine call.

case block

case statement

case block label

assignment

left side of assignment

subroutine call

class, or object

collection of objects
(for example, indexed_collection)

key value of the above collec
tion,
may use class names
update of an object

object to be up
dated
update of an object
for output data

Figure 3.8 Association between the Constructs in Traditional and
Object-oriented Programming Languages

Deriving classes from a program source first requires decomposing the

source into segments that are readily associable. For example, a case statement

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

57

(includes case blocks) by itself can be considered as one segment, and each case

block as another segment. There are no definite guidelines for partitioning a

source program, but prior experience may help. During partitioning, a stage will

eventually be reached when the segment cannot be partitioned any further in terms

of the known associations. Such a segment will be referred to as “elementary,”

and it can only be simulated by manually rewriting it in the target object-oriented

language.

As an example, consider a subroutine shown in Figure 3.9, in which the

control of the program execution flows into different case blocks of the case

statements. If a new case block is to be added to the subroutine SAMPLE, one is

required to edit, test, compile, link and load it into a new executable program; if

the executable program is large, then these steps are cumbersome, expensive, and

sometimes simply unacceptable.* The same set of problems will not arise in its

object-oriented equivalent. Each of the case blocks can be encapsulated into an

update method of classes such as classA and classB. A new case block can be

added any time by defining a new class in the system. The object-oriented equiv

alent of the subroutine, a set of message expressions, is immune to changes such as

adding new classes for new case blocks, or modifying a class for some case block.

DOCU

If it is required that neither the object code nor the source be reused, then

one may reuse a corresponding component from stages that precede the coding

stage in the life cycle of the subject. Generally, for each program unit, some

* The seriousness of the problem is illustrated by Booch [1991] through a
hypothetical situation in which the deployment of a military vessel is delayed by a
day due to extensive compilation that is required after a slight modification of the
software.

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

58

natural language descriptions of the function, data involved, and algorithm used

are given in manuals. The DOCU method of processed reuse consists of rewriting

the natural language description in terms o f objects that represent the data, func

tions, and processes. Thus, one obtains a natural language description of the

requirements or specifications of the model that needs to be developed for the

program unit.

classA

u p d a t e (. . .)S U B R O U T IN E S A M P L E (. . .)

G O T O (1 0 0 ,1 0 1 ,1 0 2 , . . . 110) IX
 1100 .

classB

__ i
u p d a t e (. . .)G O T O 111

— i
Y (l)

classes after breaking up
program In case blocks__ IG O T O 111

111 R E T U R N
E N D Indexed collection

SAMPLE: a FORTRAN subroutine source at(...

(indexed_collectlon)
______ collnl_______ class for case statement

Index : array_collectlon
data : arrayjcollection

m = c o l ln l < - a t (c l a s s n m) # c l a s s n m f o r IX

m < ~ u p d a t e

C (classA) C (classB) f message expressions
equivalent to SAMPLE

an object named collnl

Figure 3.9 An Example Application of the SORC Method

3.23 Model Refinement by Simplification

An object-oriented model derived by processed reuse of a program unit

usually has many redundancies, especially from the perspective of object-oriented

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

59

programming. These redundancies are derived from those built into the subject

software system. The redundancies are handled separately because it is easier to

do so; one first derives the model, then minimizes the redundancies (removing

redundancies is analogous to normalization in the logical design of relational data

bases). The simplification methods used in the Proto-ICAPE Project are

described below; their underlying rational can be seen by anybody familiar with

object-oriented programming:

SIM P-1: An attribute which serves to identify uniquely an instance of each

class is redundant in the object-oriented model and should be dropped. In

object-oriented systems, an object or an instance of a class is assigned a unique

identifier by the system itself; it is not the programmer’s responsibility to do so.

SIM P-2: A class with only one attribute would only require methods for

reading and writing a value or an object that is bound to the attribute. Such a

class can be removed from the model, unless it is part of a class hierarchy which is

retained for other reasons. The removal of any class requires modifying references

to the class. All attributes that are of the removed class type are set to the same

type as that of the “orphaned” attribute (see Figure 3.10).

x : Y

a : A

Before Simplification

A eliminated
A.x orphaned

a : Y

After Simplification

Figure 3.10 Application of the SIMP-2 Method to Eliminate Classes with
Only One Attribute

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

60

SIM P-3: A class with no attributes is dropped. Its named instances in the

model can be simulated by integral constants or enumerated data types in the

target system.

SIMP-4: A class can be assigned a structural signaturet consisting of a num

ber and types of attributes. The order of attributes is as irrelevant in the class

structure in object-oriented model as in the table structure of the relational data

model. A class structure can be defined by a structural signature and a private

name space; the names identify the attributes. The object-oriented model may

consist of many classes with the same structural signature but different names for

its attributes; such classes are said to be structurally equivalent. A class also has a

behavioral part that consists of methods and the sequencing of their invocations.

The classes that are structurally and behaviorally equivalent are said to be equiv

alent. All but one of the equivalent classes are dropped from the model (see

Figure 3.11). Consequently, the instances of the eliminated classes are replaced

with equivalent instances of the replacement class, and the attributes that hold

instances of eliminated classes are set to hold instances of the replacement class.

x l : Y1
x 2 : Y 2
x 3 : Y 3

A & B have same
structural signature. B

z 1 : Y1
z 2 : Y 2
2 3 : Y 3

Before Simplification

A replaced by B

2 1 : Y1
z 2 : Y 2
2 3 : Y 3

After Simplification

Figure 3.11 Application of the SIMP-4 Method to Eliminate Equivalent Classes

t In the literature on programming languages, the term signature generally
refers to the number, order, and type of arguments of a function or procedure.

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

61

SIM P-5: The class that has only redundant information, which is already in

other classes, is extraneous. Clearly, extraneous classes should be dropped from

the model. Figure 3.12 shows a pattern, which was faced in this research, wherein

a class consists of an instance of another class and some other data which is

already in the contained object; the class that contains is extraneous. Why include

such extraneous classes in the model? Clearly, they should be eliminated. There

may be other patterns of redundancy, but this was the only one that was faced in

this research.

A

x: V
p: Y 2
q : Y 3

B has no extra Information,
so it is eliminated.

Before Simplification [After Simplification

Figure 3.12 Application of the SIMP-5 Method to Eliminate Extraneous Class

B

a : A
x : Y

33 Related Research by Others

Research activity in software reuse has been going on since the early 1980’s,

as mentioned in Section 3.1. The importance of this area is clear from the conclu

sion of an analysis that of “all” (sic) code produced in 1983, probably less than 15

percent was unique, novel, and specific to applications; the remaining 85 percent

was common, generic, and could have been reused in applications other than that

for which it was developed [Jones, 1984]. Of the two areas, software reusability

Reproduced w ith permission of the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

62

and reuse of existing software, the former is more researched than the latter

[Anderson, Beck, and Buonanno 1988; Jones, 1984; Biggerstaff and Perlis, 1984;

Durek and van Horne, 1988; Pyster and Barnes, 1988].

There are only a few attempts at software reuse reported in the literature.

Notwithstanding the legal impediments to software reuse such as potential

copyright encroachment, the commercial world has already shown much interest in

software reuse during the past few years and has been actively developing software

reuse technology [Bachman, 1988; Joyce, 1988]. The tools that are presently

available are aimed at solving problems such as source-to-source translation,

cross-referencing, quality evaluation by certain metrics; these tools are used in

reverse engineering, but are of little import in software reuse (of old for the new)

per se. Unfortunately, a lack of systematic exposition of knowledge on which

these tools are based makes them seem like claims rather than true and tried solu

tions [Joyce, 1988]. Besides, none of the existing tools are designed specifically for

migration to object-oriented systems.

TWo related research efforts that are still underway need to be mentioned,

but one cannot make a valid comparison between them and the Proto-ICAPE

Project. One is conducted at the Micro Electronics and Computer Technology

Corporation (MCC), Austin, Texas. The other is in progress at the University of

Maryland, Baltimore, Maryland. The project at MCC on post-facto integration in

conjunction with DELI is discussed in more detail in Section 2.4 under the heading

DELI. Its primary focus is on reverse engineering. The idea of capturing a model

of program and data abstractions in the existing software has been reportedly

applied to two applications in systems software: window management, and persist

ent store management. Unlike the results of this dissertation, the reports are lack

ing in methodologies for software reuse that would be applicable to many

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

63

application domains. Additionally, the applications covered are rather small; a file

system does not require much code.

Caldiera and Basili [1991] at the University of Maryland are investigating

the problems of identification and “qualification” of reusable components. Their

work on identification focuses on reusability that is of little relevance to ICAE and

ICAPE. However, their work on qualification—specification, testing, encapsula

tion, and organization by classification—would be relevant to ICAPE and ICAE;

but efforts are still in progress and results awaited.

Both these projects have yet to demonstrate the applicability of their tech

niques and tools on a scale beyond tens or hundreds of lines of code. The Proto-

ICAPE Project has, in contrast, demonstrated its techniques on a larger scale; its

subject, of which some parts are covered, consists of over a quarter (1/4) million

lines of code, as described in the next chapter. Typical ICAPE or ICAE system

would be o f the order of millions or tens of million of lines of code; hence, scal

ability is an important requirement of any technique. In sum, the Proto-ICAPE

Project has made substantial contributions in the field of software reuse with a sys

tematic methodology and a demonstration of a reasonable scope of a non-trivial

subject (as described in the next chapter).

3.4 Summary

Software reuse is a generalization of software integration in ICAPE. It can

be approached in many ways, as examined in Section 3.2, but the most economical

approach for ICAPE is reengineering with virgin reuse of components from the

implementation of the subject software systems. A systematic methodology named

REO embodying the chosen approach is presented. The REO methodology

consists of three sets of methods: LANG to derive models from the programming

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

64

language descriptions; PROG to derive models from the program unit descrip

tions; and SIMP to remove some redundancies and simplify the derived object-

oriented models. LANG consists of one method based on associations between

the concepts of programming language grammar and object-orientation. PROG

consists of three methods: CODE, in which the object code is directly reused;

SORC, in which the source code is reverse engineered; and DOCU, in which

descriptions in the manuals are rewritten in terms of the object-oriented model.

SIMP presently consists of a few methods which are based on experience accumu

lated in the Proto-ICAPE Project.

Research in software reuse by others is reviewed and found lacking in both

systematic methodologies and a primary focus on object-orientation. The ideas of

software reuse are still new to the world of engineering computing.

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

4. Icape-91, A Prototypical ICAPE

65

The preceding chapter describes the REO methodology. This chapter

describes its use in the development of a prototypical ICAPE system, Icape-91,

that covers parts of ASPEN.1- The development of the prototype can be consid

ered as a case study in software reuse for ICAPE. This chapter consists of five sec

tions. The first section gives a brief background on ASPEN. The second section

gives a brief description of the ASPEN input language. The third section presents

and justifies the scope of Icape-91. The fourth section describes the derivation of

an object-oriented model for Icape-91. The final section discusses the design and

implementation of Icape-91 in VSM. A detailed model and a VSM design is

given in Appendixes A and B, respectively.

4.1 Background on ASPEN

ASPEN is a (steady state) software system well-known in the field of chemi

cal engineering for chemical process modeling and simulation. One of its major

user is to simulate a chemical process plant by a steady-state process flowsheet

model. It is also used for various physical property computations (hereafter, “PP”

stands for “physical property”) such as generating tables and graphs of PP data, or

estimating PP model parameters from experimental data.

The primary function of ASPEN is represented in the data flow diagram* in

Figure 4.1. Given a chemical process description as input, ASPEN generates a

data file called “Problem Data File,” hereafter referred to as PDF, and a program

for simulation. The PDF is a plex structured datafile; that is, a “linked-list” of

f For full name and its genesis, see footnote on page 5.

* In a data flow diagram an oval represents a process, a labeled arrow repre
sents data values, and a pair of bars around a label represents a data store.

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

66

process
simulation
description
(in ASPEN Input
language)

PP Data Banks

constants &
model parameters

ASPEN &
user
Libraries

translate
main
program
(in FORTRAN)

subroutines

compile object
code

beads \
of data

load
simulation
program

d a ta 's ,
m anagem ents

system . /
execute

beads of data &
related information

beads
of data

System
Definition Problem
File Data File

Figure 4.1 Data Flow Diagram for Simulation using ASPEN

reports

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

67

“beads” of data including bead numbers (identifiers in a directory of beads) of the

linked beads. This data structure is implemented as a large, statically allocated

array in the main program in FORTRAN. The main program is compiled with

user-supplied subroutines, and then the resulting object code is linked with codes

from the system and user libraries into one load module, a simulation program

that is executable. A simulation program in FORTRAN is generated for each

input. The main reason behind this pre-processing approach is to include only the

required subroutines and PP model parameter data, thereby reducing the size of

the final program for loading. The data contained in PDF and other files for sim

ulation history, error messages, etc., are updated during execution of the simula

tion program. Finally, reports of data in PDF are generated.

4.2 ASPEN Input Language

The ASPEN system recognizes input in a special language called “ASPEN

input language.” The ASPEN input language is similar to form-based languages.

An input file in ASPEN input language is a hierarchically organized collection of

keywords and data values. The hierarchical organization consists of three levels:

primary, secondary and tertiary. Correspondingly, the ASPEN input language pro

vides three constructs: paragraph, sentence, and value definition. A paragraph

consists of a primary keyword and has many sentences. A sentence consists of a

secondary keyword and has many value definitions. A value definition is given by

a tertiary keyword, an equality sign and one or more data values (if value defini

tions are entered positionally, tertiary keywords are optional). The syntax analysis

by the Input Translator is based on hierarchically organized tables of keywords and

data value specifications in the System Definition File. The input is first converted

into a Convenient Form Input format, an intermediate data structure that is closely

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

68

related to the specifications in the System Definition File. Some of the specifica

tions for input file formatting, such as line continuation character and maximum

number of characters per line, are handled by lexical analyzers. These are external

to data of interest, and consequently these are not considered in this project.

As an example for familiarization with ASPEN input language, consider the

sample input in Figure 4.2. It defines a flowsheet that consists of two blocks, a

flow splitter named B1 and a mixer named B2. The output process streams S2 and

S3 from the flow splitter are input to the mixer. (This is merely a hypothetical

flowsheet used strictly for illustration.) The first paragraph begins with the pri

mary keyword FLOWSHEET and the second begins with the secondary keyword

BLOCK. The first paragraph has two sentences with BLOCK as the secondary

keyword. The first of the two sentences starting with the keyword FRACTIONS

has two value definitions, “STREAM-ID = S2” and “FRAC = 0.4,” that together

specify that the flow splitter B1 splits the input stream such that the output stream

S2 is four-tenths of the input stream.

paragraph

primary
keyword

FLOWSHEET i ,
j;-j i p j j J.' p i p ; ^ ^ ■ i; | j j p i j.;j p U ;;ll p ' j p

1 B l o c k b l o c k = b i in = si o u r = S2 S3

BLOCK BLOCK = B2 8 3 ' OUT = S4

sentence

BLOCK B1 FSPLIT

FRACTIONS STREAM-ID = S2 FRAC = 0 .4

FRACTIONS STREAM-ID = S3 FRAC = 0 .6
value definition

secondary
keyword

BLOCK B2 MIXER

PARAMETERS PRESSURE = - 0 .5
tertiary
keyword

Figure 4.2 Section of a Sample Input File for ASPEN

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

69

43 Scope of Icape-91

The Proto-ICAPE Project covers only some parts, rather than the whole, of

ASPEN for various reasons. First, the ASPEN system software is large with about

a quarter (1/4) million lines of FORTRAN code [Motard, 1987]. There are over

five thousand pages of manuals for the user and system administrator. Second, to

cover all of ASPEN one would face extremely complex problems of testing and

validation. The subjects of testing include both the “integrand” and the integra

tion. The testing of integrand is not required for subjects that are well-developed

and well-documented along with test suites. The testing of integration alone is a

major cost factor in this project, mainly due to the project being the first of its

kind; such costs, however, would diminish with accumulation of knowledge and

experience. Presently, the testing of software and software components is usually

done by a brute force approach. ASPEN was developed in the 1970’s with thou

sands o f man hours and millions of dollars from the National Science Foundation,

the Departm ent of Energy and over fifty industrial sponsors. At the time, methods

of software engineering were not widely practiced; even today, it is the same to a

large extent, although many advances are being made in the field of software engi

neering. One only has to guess the resources that one would need for testing

alone if one were to integrate all parts of ASPEN. Third, it is sufficient to cover

only parts of ASPEN for the aim is only to illustrate the applicability of REO tech

niques.

The PP subsystem of ASPEN is chosen for Icape-91 because almost all

chemical engineers are familiar with various tasks in PP computation. In this dis

sertation, the task performed by the Table Generation System, hereafter referred

to as TGS, is covered. TGS is used to generate tables of transport and thermody

namic property data for mixtures of components in many phases. The task of

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

70

param eter estimation of different PP models is handled by the D ata Regression

System.

4.4 Integration of ASPEN

Consider briefly the limitations of ASPEN in its current form first, after

which the discussions on the derivation of object-oriented models are presented.

First, the pre-processing approach is no longer required for m odem environments

that support dynamic linking and loading. (The problem is the non-modifiability

of the structure, not only the data, of the plex data structure defined during pre

processing.) Second, the ASPEN system definition is not easy to modify. In order

to add a new physical property model as a part of the system, one has to go

through many steps including adding the statement label in the system definition

file. Inclusion of the statement label is an example of veiy tight coupling: callers

of the program unit, to which the code is added, control the “internal” execution

of the called program unit. Third, even a simulation or model of a process cannot

be modified in certain respects. Certain modifications that require a change in the

plex data structure are impossible. For example, it is impossible to add a new

chemical component after a simulation is created; it would require not only the

extension of the data for all streams, but also the retrieval of various param eter

data from the data bank and the updating of many param eter data of physical

property routines. It is safe to say that these limitations are also largely true of the

commercial versions of ASPEN that are based on the version in the public

domain.

Thus ASPEN in its present form is not, or rather cannot be, highly interac

tive. Note that an interactive graphical user interface that interfaces with ASPEN

at the input and output levels, a black box approach, does not make the system

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

interactive. For high interactivity, one would also have to cover the program units.

This led to the possibility of applying the ideas and mechanisms of VSM to inte

grate ASPEN into Icape-91.

Unfortunately, VSM provides little help in integrating only parts rather than

the whole (as discussed in Section 2.3.1) of ASPEN. In VSM, one would map data

and code from the “application space” (the area of memory managed by the tool

that is integrated) to the “VSM space” (as against the application space); that is,

all tasks concerned with allocation and management of memory space are left to

ASPEN. Thus, one has to include the complete subsystem for plex data manage

ment. (At this point, an obvious question that arises is why not use objects allo

cated in the VSM space, since VSM itself has almost all the functions one would

need for the allocation and management of memory space?) All information

required to organize data given in the input file and retrieved from other sources

into the plex structure is coded or hard-wired in the pre-processing routines.

Thus, one also has to include all routines employed in the pre-processing step, in

addition to all routines that make a simulation. Note that in no way is the soft

ware or tool itself modified or improved. So, what is the net gain if integration

inherits the encumbrances or the legacies of the old design, many of which are in

conflict with the object-oriented paradigm? The only gain is that the data once

mapped to objects can be shared with other objects and applications. Certainly,

true object-orientation is lacking.

Thus, an alternative is to follow the REO methodology to derive object-

oriented models and reuse implemented and tested code in Icape-91, as discussed

in the next section.

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

72

4.5 REO for Icape-91

The derivation of object-oriented models following the REO methodology

is described below by covering first the program input, then the output, and finally

the program itself (any other order is admissible). The complete object-oriented

model for the TGS subsystem will be called REO -TG S to indicate that it is

derived by following the REO methodology and the subject is the TGS subsystem.

4.5.1 REO for Input

In this section, the derivation of the REO -TG S model for input to TGS in

ASPEN input language is discussed. The first part (these parts are not marked)

introduces an example of TGS input to familiarize the reader for the discussions

that follow. The second part describes the syntax of fragments of the ASPEN

input language. The third part presents the derivation of object-oriented models

by applying the LANG method. The final part simplifies the derived model by

applying the SIMP methods.

A sample input for TGS is shown in Figure 4.3. For a pair of chemical

components (defined by the keyword COMPONENTS), a new set of PP tables is

required (defined by the keyword PPTABLES) that would contain various proper

ties (defined by the keyword DEP-VAR) of a mixture of the given components in

a fixed composition (defined by the keyword SYSTEM) for a range of values

(defined by the keyword RANGE) of temperature and pressure (defined by the

keyword INDEP-VAR) based on a PP model of thermodynamic equations and

correlations (defined by the keyword PROPERTIES). In other words, for given

components, the sample input demands computation of fugacities, both in a pure

and mixed state, and the enthalpies and volume of the mixture in the vapor phase.

The two tables required (defined by the keyword TABLE) are for component

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

73

fugacities and various mixture properties. The PP models of thermodynamic equa

tions and correlations (referred to by the keyword OPSETID) are discussed sepa

rately later.

COMPONENTS COMP = METHANE NAME = CH4
COMPONENTS COMP = ETHANE NAME = C2H6
PPTABLES TBL34 PROPS

DESCRIPTION NAME = ‘a sample'
PROPERTIES OPSETID = SYSOPO
SYSTEM NO = 1 COMP = METHANE FLOW = 0.4 / COMP = ETHANE FLOW = 0.6
INDEP-VAR NO = 1 VARNAME = TEMP
RANGE NO = 1 LIST = 400.0 430.0 460.0 490.0 520.0
INDEP-VAR NO = 2 VARNAME = PRES
RANGE NO = 2 START-VAL = 1.0e+5 FINAL-VAL = 2.0e+6 INCREMENT = 1.0e+5
DEP-VAR NO = 1 VARNAME = PHIVMX PHIV
DEP-VAR NO = 2 VARNAME = HVMX DHVMX VVMX
TABLE NO = 1 HEADING = ‘Mixed and Pure Component Fugacities’ &

SYSTEM = 1 INDEP-VAR = 1 RANGE = 1 INDEP-VAR = 2 RANGE = 2 &
DEP-VAR = 1

TABLE NO = 2 HEADING = 'Mixture Enthalpy, Enthalpy Departure & Volume’ &
SYSTEM = 1 INDEP-VAR = 1 RANGE = 1 INDEP-VAR = 2 RANGE = 2 &
DEP-VAR = 2

Figure 4.3 A Sample Input for TGS

The parts of ASPEN input language relevant to TGS are specified in the

EBNF notation and the regular definitions shown in Figure 4.4. The terminal

symbol with only one lexeme pattern, such as the definition d l9 in Figure 4.4,

“ COMP ::= COMP,” is irrelevant, for it need not be associated with any class,

instance or method. One may redefine the terminal symbol prop (see d l7), as

shown in Figure 4.4, in terms of the symbol for component (the terminal symbol

cm -p ro p) and mixture (the terminal symbol m x-prop). For the sake of simplicity,

this extension (see Figure 4.5) is excluded from this project. The full syntax for

ASPEN input is informally described in Chapter 11 of the ASPEN User Manual,

Volume 1 [Graham, 1982a].

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

74

d1) tgs := { com ps} pptbls
d 2) comps := C O M PO NENTS C O M P = old N A M E = nam e
d3) pptbls := PPTABLES tabid tab typ snts
d4) snts := [desc] [mdl] [optn'] { sys } { ivar }{ dvars } [state’] { rng } { t b l }
d5) desc := DESCRIPTION N A M E = text
d6) mdl := PROPERTIES OPSETID = opsetid [SSCLISTID = sccllstld]
d7) sys := SYSTEM NO = num { C O M P = cld FLOW = num }
d8) Ivar := IN D E P -V A R NO = num V A R N A M E = Ivarnam e
d9) dvars := D EP -V A R NO = num V A R N A M E = {dvarname} [PHASES = phasek]
dIO) rng := RANGE NO = num (list-sp | range-sp)
d11) tbl ! = TABLE NO = num HEA DING = text SYSTEM = num

{ IN D E P -V A R = num RANGE = num } D EP -V A R = num
d12) dvarname = Ivarnam e | prop
d13) llst-sp = LIST = {num}
d14) range-sp : = START-VAL = num F IN A L-V A L = num IN C R E M E N T = num

s p e c i f i e d l o r o t h e r u s e s
e x a m p le : s e n t e n c e f o r s f a f e i s n e e d e d if c o m b in a t io n o f
i n d e p e n d e n t v a r i a b le s Ivar a n d r a n g e s p e c i f i c a t io n rng Is n o t
s u f f i c i e n t t o c o m p le te ly s p e c i fy t h e s t a t e o f th e s y s t e m

PRODUCTIONS

d15) tab typ ::= PROPS | FLASHCURVE PTENVELOPE
d16) Ivarnam e ::= TEMP | PRES | VFRAC MOLEFRAC | MOLE
d17) prop ::= PHI | PHIMX | DHMX | * | SIG | SIGMX
d18) phasek ::= V | L | S | VL | VS | LS | VLS
d19) C O M P ::= COMP

^ m o r e o n p a g e s 4 6 9 -7 1 o f A S P E N U s e r M a n u a l , V o lu m e 1 [G ra h a m ,

19B2a) DEFINITIONS for some terminal symbols

Figure 4.4 Syntax Specification of Parts of the ASPEN Input Language for TGS

dA) prop
dB) em -p ro p
dC) m x-prop
dD) propfn

cm -prop | m x-prop
PHIMX | propfn
propfn MX
PHI | H | S | G | V | DH DS | DG | HXS | GXS MU | SIG | K | D

N O T E :
■ c m - p r o p (s e a d e f in i tio n d B) Is f o r p u r e a n d m ix e d c o m p o n e n t s
* d D c a n t ie f u r th e r r e d e f in e d fo r p r o p e r ty d e p a r t u r e s

Figure 4.5 Specification of Some Terminal Symbols in the ASPEN Input Language

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

75

Once the language syntax is specified, the LANG method is applied to

derive an object-oriented data model, as shown in Figure 4.6, that is associated

with the language specification. The model would have all the data necessary to

generate input for the program. The production d3 (in Figure 4.4, the production

d4 is split from d3 for convenience) is associated with the class named ppjables (in

Figure 4.6), d5 with the class named description, d6 with the class named ppjnodel,

d l l (d l l is a group of productions) with the class named range_def and subclasses

list and range, and d l2 with the class named table. The definition d l7 is associated

with the class property keyword and instantiations for each of the choices on the

right side.

This model is further simplified by applying the SIMP methods (described

in Section 3.2.3), as shown in Figure 4.7. If one applies the SIMP-1 method, the

class component loses the attribute id, the class ppjables loses the attribute id, the

classes system, independent_var, dependent ja r s , and range_def lose the attribute

number, and so on. If one applies the SIMP-2 method, the class description with

the only attribute named name of the type text is dropped from the model, and the

attribute desc in class ppjables is set to the type text. Similarly, the class indepen

dent j a r with the only remaining attribute named vamame of the type ivarname is

dropped from the model, and the attribute ivar in class ppjables is set to the type

ivarname. Note that the class list should be retained because it is part of the hier

archy that is retained; the class range_def is retained because the class range is

retained. If one applies the SIMP-3 method, the classes property Jceyword, phasek,

ivarname, dvarname (dvarname has only two subclasses, property Jceyword and ivar

name, both of which are dropped) and tabtype are dropped, and replaced by inte

gral constants. Thus the attribute tabtype in class ppjables, and the attributes var-

name and phases in class dependent ja r s , are set to the type integer.

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

component

Id : text
name : text

ivar_range

lnd_var : number
range : number

pp_tables

Id : text
tabtype : tabtype
desc : description
pp_mdl : pp_model
sys[] : system
lvar[] : lndependent_var
dvar[] : dependent_var
range[] : ako range_def
table [] : table

range_def

number : number

list range

valjlst []: number start_val : number
flnalj/al : number
Increment : number

description

name : text
dvarname

pp_model

opsetid : text
8ccllst Id : text

system

num ber: number
compflow[] : comp_flow

property_keyword ivarname

comp_flow

comp : text
flow : number

f (property keywordM
I PHIVMX J

(Ivarname)
TEMP

(Ivarname)
PRES

lndependent_var

number : number
vamame : ivarname

tabtype

dependent_vars

number : number
varname[] : dvarname
phase : phasek

(tabtype)
PROPS

table

number : number
heading : text
system : number
lvar_rng[] : lvar_range
dep~var [j : dependent_var

phasek

similarly for other
terminal symbols:

- val
- num
- text
- Id, opsetid

(phasek)
VL

Figure 4.6 Application of the LANG Method to the Specifications in
Figure 4.4 and 4.5

Reproduced w ith permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

77

component

Jd> text
name : text

ivar_range

lnd_var : number
range : number

ppjables

tabtype : tabtype
desc : aiijSfljSlflSgil
pp_mdl : pp_model
sys[] : system
tvart 1 : independent_var
dvar[1 : dependentjvar
range[1 : ako range_def
table[1 : table

range_def

iilhumberMf umber!?

list range

valjist []: number start_val : number
flnal_val : number
Increment : number

description

name

pp_model

opsetid : text
sccllst Id : text

dvarnamo

system

compflow!] : comp_flow

property_keyword Ivarname

comp_flow

comp : text
flow : number

(Ivarname)
TEMP

todependerrtjvar

number * number
varname Ivarname

tabtype

dependent_vars

varname!] : dvarname
phase : phasek

table

heading : text
system : number
lvar_rng[] : lvar_range
dep~var[j : depindent_var

similarly for other
terminal symbols:

- val
- num
- te x t
- M i opsetid

indicates Item that Is
dropped or replaced

Figure 4.7 Application of the SIMP Methods to the Model Derived as
Shown in Figure 4.6.

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

78

Next, consider the language fragments for defining PP models. But first

some background is necessary. The ASPEN system provides a construct called

“option set” for combining various equations and correlations for PP computation.

(Why such a construct is named “option set” is not explained in ASPEN documen

tation.) Consider first a simple example illustrated in Figure 4.8 (it shows a way to

calculate the fugacity coefficient of a component in the liquid phase) for a short

introduction to the terminology of ASPEN; the terminology may confuse many

chemical engineers who are not familiar it. In ASPEN, the equations that are

thermodynamic derivations, such as the vapor liquid equilibrium equations shown

in Figure 4.8 for PHILMX and PHIL properties, are referred to as “methods.”

The PP correlations and fitting equations, such as the Antoine equation for vapor

pressure, the Andrade equation for viscosity, and the Redlich Kwong equation of

state, are referred to as “models.” Since ASPEN’s terminology conflicts with that

of object-oriented programming, the terms “AP1- methods” and “AP models” are

used instead of “methods” and “models,” respectively.

In ASPEN, PP ’s are classified into three distinct categories: major proper

ties, subordinate properties and intermediate properties. (In a strict sense, some

of the commonly occurring terms, such as the Poynting correction, in thermody

namic calculations are not properties of physical substances. In ASPEN, however,

these are expediently called physical properties.) The major properties are those

that are required for simulating unit-operations; these include fugacity coefficient,

enthalpy, entropy, free energy, molar volume, viscosity, diffusion coefficient, sur

face tension, and thermal conductivity. O ther properties are required solely to

compute major properties. These include the intermediate properties such as the

f Hereafter, the symbol “AP” stands for “ASPEN Physical Property Subsys
tem.”

Reproduced w ith permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

vapor pressure of liquid that can be computed only through AP models. The

remaining PP ’s, the subordinate properties, are computed through AP methods;

these include departure functions, excess functions, and pressure corrections for

various thermodynamic properties. A combination of AP methods, AP models,

and various approximations (defaults, specified through codes) that fully define a

model for computing a physical property is called a route. A collection of routes is

called an option set.

<t>iL = Yi * ‘fci01- * 0iE

(f>jOL = (<j)|OV . p|L . 0|OL) / p

where, <j>|ov |S given by Ideal Gas model

PiL Is given by Extended Antoine model

Yi Is given by Unlquac model

6|E and ® i0 L are set to default value of 1

PHILMX = GAMMA • PHIL - GAMPC

PHIL = (PHIV - PL • PHILPC) / PRESSURE

where, PHIV from ESIG

PL from PLOXANT

GAMMA from UNIQUAC

Formulas expressed in Greek symbols Formulas expressed In ASPEN keywords

Figure 4.8 A Sample Route to Calculate Fugacity Coefficients

The ASPEN system provides many built-in option sets, routes, AP methods

and AP models. The user can define new option sets, routes, AP methods and AP

models either from scratch or as modifications of the existing ones. Figure 4.9

shows a sample input to create an option set and routes for the above example.

The option set (defined by the keyword PROP-OPTIONS) consists of two major

properties. An asterisk sign is used to denote null value. The two equations in

Figure 4.8 are specified as the two routes for major properties in Figure 4.9 (def

ined by the keyword M P-ROU TE). A route is uniquely identified by a property

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

80

keyword and a “method code” (for example, the number 2 in M P-ROUTE sen

tences), and is completely defined when methods are specified for the input prop

erties. The routes for input properties are specified through the keyword MPROP

for the m ajor properties, SPROP for the subordinate properties, and M ODEL for

the intermediate properties; all are specified in a particular order given in Appen

dix PP4.5 of the ASPEN User Manual, Volume 1 [Graham, 1982a]. For example,

the input properties for PHIL using method code 2 (see Figure 4.9) are specified

in the following order: PL, PHIV, and PHILPC. This requirement stems from

hard-w ired sequence control of program statements for calculating PHIL in a cer

tain program unit. The handling of derivatives with respect to temperature and

integrals over pressure complicates the program execution, but the ASPEN input

language is unaffected.

(j>|L = •yi * » 0 |E

<j>l°L = (<j)|OV » p;L * 0|OL) / P

where, <(>iov is given by Ideal Qas model

PiL is given by Extended Antoine model

7i Is given by Unlquac model

A Sample Option Set

P R O P - O P T I O N S O P S E T 5 5 * PHILM X PH ILM X 55 / PHIL PH IL55
M P -R O U T E PH ILM X 55 PHILM X 2 ’ ; t o r PHILM X

M O D E L U N IQUAC ; fo r G A M M A
M P R O P PHIL PH IL55 ; fo r PHIL

; fo r G A M P C u s e d e f a u l t v a lu e
M P -R O U T E PHIL5S PHIL 2 * ; fo r PHIL

M O D E L PLOX ANT ; fo r PL
M O D E L ESIG ; fo r PHIV

; fo r PH ILPC u s e d e f a u l t v a lu e

Note: “ "Is for missing Information,
The names OPSET55, PHILMX55, PHIL55 are arbitrarily given.

Sample Option Set In ASPEN input language

Figure 4.9 A Sample Input for Defining an Option Set

Reproduced w ith permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

81

The syntax of the language fragment for creating an option set is shown in

Figure 4.10. The definitions d5, d6, and d7 describe the syntax for specifying an

AP model for an intermediate or major property, a route for a major property,

and a route for a subordinate property, respectively. The definitions d3 and d4

describe the syntax for specifying a route for major and subordinate properties,

respectively. The definitions d l and d2 together describe the syntax for specifying

an option set. A new option set or route can also be defined as a “modification”

of another option set or route, known as the “base.” In Figure 4.10, an asterisk

sign is used to indicate a null value for the base option set or base route. (Liter

ally speaking, modification should mean only in-place changes, not a derivation of

a new version.) This m atter is excluded from the scope of Icape-91 because

VSM—the implementation platform for Icape-91—does not support versions of

objects. As discussed in the preceding paragraph, the full specifications for a

route—the syntax of which are described by definitions d5, d6, and d7—must be

stated in a fixed order given in Appendix PP4.5 of the ASPEN User Manual, Vol

ume 1 [Graham, 1982a].

The LANG method is applied to the language specification presented

above resulting in an object-oriented model shown in Figure 4.11. Classes are

created for each production: option_set for d l; major_prop_spec for d2;

m propjoute for d3; spropjoute for d4; and mdl_spec, mprop_spec, and sprop_spec

for d5, d6 and d7 respectively. Classes and instantiations are created for each reg

ular definition: propjcwd and sprop_kwd for dlO and d l l , respectively; instances

for every choice of tokens on the right side of dlO and d l l . As before, any regular

definition with only one lexeme pattern, such as d l2 , need not be considered.

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

82

d1) opset ::= PROP-OPTIONS opsetld * { mprp }
d2) mprp ::= M P -K W D = m pkwd M P-RO UTE = id
d3) mprt : := M P-RO UTE ROUTE-ID = Id KEYWORD = m pkwd

I { md l }] [{ mprp }] [{ sprp }]
d4) sprt : := SP-ROUTE ROUTE-ID = id KEYWORD = spkwd

[{ md l }] [{ mprp } \ [{ sprp }]
d5) mdl ::= M O DEL M O D EL = text
d6) mprp ::= M PROP M P -K W D = m pkwd M P-R O U TE = Id
d7) sprp ::= SPROP SP-KW D = spkwd SP-ROUTE = id

M ETHO D = num

M ETHO D = num

PRODUCTIONS

d10) mpkwd
d11) spkwd
d12) M PROP

t

PHIV | PHIVMX | PHIL | PHILMX | t .
DHV | DHVMX | DHL | DHLMX | t . . .
MPROP

m o r e o n p a g e 4 6 9 - 7 1 o f A S P E N U s e r M a n u a l , V o lu m e 1 [G ra h a m , 1 9 8 2 a)

| SIGL | SIGLMX
GAMPC I HNRYPC

DEFINITIONS for some terminal symbols

Figure 4.10 Syntax Specification of Parts of the ASPEN Input Language
for Option Set

This model shown in Figure 4.11 is simplified by applying the SIMP meth

ods (refer to Section 3.2.3) as shown in Figure 4.12. If one applies the SIMP-1

method, the class option_set loses the attribute optionsetjd and mprop_route, and

the class spropjoute loses the attribute id. If one applies the SIMP-2 method,

the class named mdljspec is dropped and the attribute named mdljspec of classes

named mprop_route and spropjoute is thus set to the type text. If one applies the

SIM P-4 method, of the two equivalent classes major_prop_spec and mprop_spec,

the former is dropped. Similarly, the classes mprop_kwd and spropjcwd are

replaced with propjcwd, and its set of instances is a union of a set of instances of

the replaced classes. Furthermore, the two attributes mpropjcwd and spropjcwd

in the classes m propjoute and spropjoute are set to be o f the type propjcwd.

Similarly, the type of two attributes mprop_kwd and spropjcwd in the classes

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

83

option_set

optionsetjd : number
major_prop_spec[] : major_prop_spec

mdl_spec

mdl name : text

major_prop_spec

mprop_kwd : mprop_kwd
mprop~route : mprop_route

mprop_spec

mprop_kwd : mprop_kwd
mprop_route : mprop_route

mprop_route

Id : number
mprop_kwd : mprop_kwd
method_code : number
mdl_spec[J : mdl_speo
mprop_spec[J : mprop_speo
spropJipec[] : sprop_spec

sprop_route

Id : number
spropjcwd : sprop_kwd
method_code : number
mdl_spec[] : mdl_spec
mprop_speo[] : mprop_spec
sprop_speo[j : sprop_spec

sprop_spec

sprop_kwd : sprop_kwd
sprop_route : sprop_route

mprop Jcwd

(mprop kwd) A >
PHIV J

sprop_kwd

(sprop_kwd)
DHV

order uniquely determined
by method code and
mprop kwd" or spropjo/vd

similarly for other
terminal symbols:

- val
- num
- text

Figure 4.11 Application of the LANG Method to the Specifications in Figure 4.10

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

84

C1

optlon_set

optionsetjd : number
major_prop_spec [] prop_route

C2

maJor_prop_spec

mprop kwd : mprop kwd
mpropj-oute :
mprop route____________

C3

mpropj-oute

id s ntWTOw
mprop Jcw d. mpropjcwd
method_code : number
mdl_spec[J . mdl_spec
mprop_$poc[] . mprop_spec
sprop_4pcc| J : sprop_speo

C5

mdl name ■ text

C6

mprop jspec

mprop_kwd . mprop_kwd
mprop'route ; mprop_route

C7

sprbpjspep

spropjcwd. spropjcwd
sprop_route : sprop_route

R2 for C6, C7

spropjtpoc
spropjcwd: sprop kwd
sprop joute : spropjoute

C8 C9

mprop Jcwd spropjcwd

C4

sprop jou te

spropjcwd : sprop kwd
method code : number
mdljspec [] : mdl_speo
mprop_$pec}J : mpropjspec
sprop_spocI} : sprop_spoo

(mpropJcwd)
PHIV

R1 for C8 and C9

(spropjcwd)
OHV

mpropjcwd

R3 for C3 & C4

prop jou te

propjcwd : prop_kwd
method_code : number
mdl_spec(J mdl_spec
p ro p jp e o f] : p ro p jp e c

(mpropjcwd)
PHIV

similarly for other
terminal symbols:

- val
- num
- text

R4 for R2 & R3

prop_route

propjcwd : propjcwd
method_code : number
mdl_spec[] : mdl_spec
p ro p jp e c [] : prop_spec

order uniquely determined by
method code and mprop kwd
or sprop kwd

indicates that the item is
dropped or replaced

Figure 4.12 Application of the SIMP Methods to the Model Derived as
Shown in Figure 4.11

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

85

mpropjspec and sprop_spec is set to propjcwd. Again, according to the SIMP-4

method, the two classes mpropjspec and sprop_spec are replaced with the class

propjspec. The classes mprop_route and sprop_route are replaced with propjoute;

and the two attributes mprop_spec and sprop_spec in the resulting new candidate

class prop jou te are merged into the attribute p rop jpec , and the type of attribute

prop jou te in the new candidate class propjpec is set to propjoute. If one

applies the SIMP-3 method, the class propjcwd is dropped and its instances

replaced by integral constants; and the type of attribute propjcwd in the new

classes propjou te and propjpec are set to the type integer. Since the class

p ro p jp ec is extraneous, according to the SIMP-5 method it is merged with

propjou te . The resulting model after application of the SIMP methods is clearer,

smaller, simpler and has fewer classes. This model consists of only two classes,

option j e t 1' and propjou te (C l and R4 in Figure 4.12), and can be used to redefine

the ASPEN input language for conciseness and simplicity. Note that the three PP

categories, major, intermediate, and subordinate, are no longer present; further

more, they are not found in the subject of thermodynamics itself. This classifica

tion of properties is specific only to the ASPEN system and stems from implemen

tation considerations.

The complete REO-TGS model that combines the model in Figure 4.6 and

4.12 is presented in Figure 4.13. The SIMP methods can be further applied to

eliminate redundant—duplicate, equivalent, and extraneous—classes, if any. The

model so far includes only the structural aspects of data in TGS input, but it

f In terms of graph theory, an option set is a directed acyclic graph with nodes
consisting of AP methods and AP models. A route is a tree in such a graph, a
collection of connected nodes with a root node for computing a particular major
property.

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

86

pp_tables

tabtype : Integer
desc : text
pp_mdl : ppjnodel
sys[] : system
lv a r [) : independent_var
dvar[] : dependentjvar
range!] : ako range_def
table! I : table

component

name : text

range_def

A

list

valjlst!]: number

range

start_val : number
flnal_val : number
Increment : number

option_set

optionsetjd : number
major_prop_spec [] : prop_route

dependent_vars

varnamej I : dvarname
phases : phasek

system

comp[] : component
flowj 1 : number

pp_model

o p s e t: optlon_set
sccllstld : text

prop_route

propjcwd : propjcwd
method_code : number
mdl_spec[] : mdl_spec
prop_specf] : prop_spec

table

heading : text
system : system
indep_var : lndependent_var
range!] : range_def
dep_var[) : dependent_var

order uniquely determined
by method code and
mprop kwd" or sprop kwd

Figure 4.13 REO-TGS, An Object Oriented Model of Input Data for TGS

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

87

should be extended with behavioral aspects, at the least, with methods to update

the objects.

4.5.2 REO for Output

The above modeling process can be repeated for the TGS program output

language, if any. The output from TGS consists of tabularly formatted PP data for

the specified set of dependent variables for the given mixture of components,

option set, and range of values for independent variables. These outputs are in

custom formats, and there is no language discipline. For Icape-91, the TGS out

put is not considered for the following reasons. First, it is rather tedious to create

a language definition by analyzing the code or many samples of many kinds of out

puts. Second, if both the input and the program are covered, then logically it is

not necessary to cover the output. Third, the goal of the Proto-ICAPE Project is

to integrate programs at a level deeper than the black-box at input and output

level.

4.53 REO for Program

The program units that are built into or may be generated by ASPEN are

subjected to the PROG methods of reuse in the manner discussed in Section 3.2.2.

Processed reuse of a selected program unit involves deriving and associating one

or more classes.

The program structure diagram for TGS is “rooted” in a program unit

called ASPEN that is generated by the input translator. Actually, the input trans

lator generates a program named MAIN and a subprogram named ASPEN; MAIN

consists of only one executable statement, a call to ASPEN. The handling of

in-line FORTRAN statements will not be discussed to keep matters simple. A

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

88

typical ASPEN subroutine is given in Section 3.4 of the ASPEN System Adminis

tration Manual, Volume 1 [Graham, 1982b).

The candidate program units for the TGS program are listed in Thble 4.1

along with the reason for their selection, whether they are relevant or bridge pro

gram units. The list does not expand the program units that have no selected

dependents, direct or indirect. For example, none of the dependents of EXMON

are selected, hence they are not included in the table. ASPEN calls INTSEM,

PPLOAD, LDSTW, EXMON, SEQMON, RPTMON and other subroutines (the

name is given as “M NF” suffixed with an integer) that are generated for each pro

cess unit in the process flowsheet. The processing of input is done by TGS1 and

TGSI, the latter called by RPTMON (see Chapter 10 of the System Administration

Manual, Volume 2 [Graham, 1982c]). TGSI and TGSI are relevant program units

because both affect objects in REO -TGS as stated in their function definition.

RPTMON is a bridge program unit between two relevant program units, MAIN

and TGSI. WRTTBL processes the specification of independent variables and

their ranges in the input for TGS that are associated with objects in REO-TGS,

thus it is a relevant program unit. THERMO, TXPORT, EOSMON, and others

are relevant program units by similar arguments. ERRO R and LERRPT are not

qualified as relevant or bridge program units because their function is solely to

generate outputs (create logs of error reports).

The next step involves selecting a method of reuse, DOCU, SORC, or

CODE, for each of the selected program units, as shown in Thble 4.2. The DOCU

method is chosen for all bridge program units. O ther methods are selected, as dis

cussed in Section 3.2.2, for the relevant program units. The code of TGSI or

TGSI is too complex for direct reuse because it requires many data structures and

program units that are not selected (in principle, any arbitrary constraint may be

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

89

Table 4.1 Selection of Candidate Program Units

Callers Program Units Function Definition
Select?

Reasons if affirmative.

M A IN

A S P E N

R P T M O N

A S P E N

INTSIM

P P L O A D

L D S T W

E X M O N

S E Q M O N

R P T M O N

M N F n

R E P O R T

F L W R P T

P R P R P T

U O S R P T

S T R R P T

C S T R P T

E C O R P T

D R S I

T G S I

S i m u l a t e : A p r o c e s s m o d e l In
A S P E N in p u t la n g u a g e .

In i tia l iz a tio n : F i le s , C O M M O N S .

L o a d : P P d a t a .

L o a d : S t r e a m w o rk C O M M O N .

D e c id e : S im u la t io n , r e p o r t w r i t in g ,
o r b o th .

D e c id e : B lo ck fo r s im u la t io n .

O u tp u t (R e p o r t) : U n it O p e r a t io n s ,
P h y s ic a l P r o p e r t i e s , S t r e a m s , C o s t ,
E c o n o m ic s , b a t a R e g r e s s io n , T a b le
G e n e r a t io n .

S i m u l a t e : A b lo c k .

O u tp u t (R e p o r t) : L a y o u t a n d T a b le o f
C o n t e n t s o f a r e p o r t .

O u tp u t : F lo w s h e e t s e c t io n .

O u tp u t : P h y s ic a l P r o p e r t i e s .

O u tp u t : U n it O p e r a t io n s .

O u tp u t : R e p o r t fo r S t r e a m s .

O u tp u t : R e p o r t fo r C o s t .

O u tp u t : E c o n o m ic E v a lu a t io n .

O u tp u t : D a t a R e g r e s s io n .

O u tp u t : T a b le G e n e r a t io n .
I n te r f a c e t o T G S r o u t in e T G S 1 .
P r o c e s s : P P T A B L E S o c c u r e n c e .

Y e s .
R e le v a n t (s t a r t i n g n o d e) .

Y e s .
B r id g e : A S P E N , T G S I.

Y e s .
B r id g e : R P T M O N , T G S 1 .
R e le v a n t t o R E O - T G S .

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

90

Table 4.1, continued

Callers Program Units Function Definition
Select?

Reasons if affirmative.

T G S I T G S 1 P r o c e s s : TA B L E s p e c s . Y e s .
R e le v a n t t o R E O - T G S .

T G S I W R T T B L C a lc u la te : I n d e p e n d e n t v a r i a b le s w ith
t h e g iv e n r a n g e s p e c i f i c a t io n s .

Y e s .
R e le v a n t t o R E O - T G S .

W R T T B L C M O N

X F L A S H

P T E N V I

P r in t : C o m p u te d (th ro u g h s u b r o u t in e s)
v a lu e s o f d e p e n d e n t v a r i a b le s .

C a lc u la t e : VLE d a t a .

C a lc u la te : P T e n v e lo p e .

Y e s .
B r id g e : W R T T B L , V T H R M .

C M O N V T H R M C a lc u la te : C e r ta in v a p o r p h a s e p r o p e r t i e s y e s
B rid g e : C M O N , T H E R M O .

L T H R M C a lc u la te : C e r ta in liq u id p h a s e p r o p e r t i e s - d o -

S R F T E N C a lc u la te : S u r f a c e t e n s io n p r o p e r t i e s . - d o -

V T H R M ,
L T H R M ,

T H E R M O ,
T X P O R T

C a lc u la te : R e s o lv e d r o u te b e a d (s e t o f
G O T O la b e ls) fo r a n o p t io n s e t .

Y e s .
R e le v a n t t o R E O - T G S .

S R F T E N

T H E R M O ,
T X P O R T

E O S M O N C a lc u la te : G O T O la b e l f o r e q u a t io n o f
s t a t e A P m o d e l f ro m t h e e q u a t io n of
s t a t e b e a d .

Y e s .
R e le v a n t t o R E O - T G S .

IG M O N C a lc u la t e : U s e I d e a l - g a s e q u a t io n o f
s t a t e A P m o d e l .

Y e s .
R e le v a n t t o R E O - T G S .

C A L M O N C a lc u la t e : M a jo r p r o p e r t i e s u s in g
in f o rm a t io n in r e s o lv e d r o u t e b e a d fo r
th e o p t io n s e t .

Y e s .
R e le v a n t t o R E O - T G S .

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

91

Table 4.1, continued

Callers Program Units Function Definition
Select?

Reasons if affirmative.

E O S M O N E S 0 1 ,
E S 0 2 ,
E S 0 3 ,

C a lc u la t e : U s e a s p e c i f ic e q u a t io n
o f s t a t e A P m o d e l .

Y e s .
R e le v a n t to R E O - T G S .

C A L M O N D F T M O N C a lc u la t e : D e f a u l t v a lu e s o f m a jo r
p r o p e r t i e s .

Y e s .
R e le v a n t to R E O - T G S .

C L M O N 1,
C L M O N 2,
C L M O N 3

C a lc u la t e : P h y s ic a l p r o p e r ty th ro u g h
A P m e th o d s .

Y e s .
R e le v a n t to R E O - T G S .

C L M O N 1 ,
C L M O N 2 ,
C L M O N 3

M O D M O N C a lc u la t e : G O T O la b e l fo r A P m o d e ls ,
t e m p e r a t u r e d e r iv a t iv e s , p r e s s u r e I n te g ra l s
o f v a r io u s p r o p e r t i e s .

Y e s .
R e le v a n t to R E O - T G S .

M O D M O N M D M O N 1 ,
M D M O N 2 ,
M D M O N 3

C a lc u la te : P h y s ic a l p r o p e r ty
th r o u g h A P m o d e l s .

Y e s .
R e le v a n t to R E O - T G S .

M D M O N 1 P L 0 0 2 C a lc u la t e : U s e C a v e t t v a p o r
p r e s s u r e A P m o d e l .

Y e s .
R e le v a n t to R E O - T G S .

PL 001 C a lc u la te : U s e E x te n d e d A n to in e
v a p o r p r e s s u r e A P m o d e l.

- d o -

M D M O N 2

M D M O N 3

P L 0 0 1 ,
P L 0 0 2 ,

E S 0 1 ,

E R R O R R e c o rd : E r r o rs
S t o p : M A IN If t h e lim it o n e r r o r s Is
r e a c h e d .

id Lg a s

L E R R P T R e c o rd : E r r o rs
S t o p : M A IN if t h e lim it o n e r r o r s Is
r e a c h e d .

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

92

imposed for integration); hence, the CODE method is inapplicable. Furthermore,

it is not necessary to capture the program structure, the internals, of both TGSI

and TGSI; thus, the SORC method is not applicable. The only remaining method

of reuse, the DOCU method, is applicable and selected for TGSI and TGSI. In

contrast, the program structure of the WRTTBL unit is relevant, and its source

form is not too complex for reverse-engineering and the object code is not directly

reusable; thus the SORC method is chosen for its reuse. The code of PL001 to

IDLGS program units can be directly reused; for these the CODE method is

selected. A reuse method is chosen for other program units in the same manner.

Table 4.2 Program Units and the Selected Method of Reuse

Program Unit Type*

Method of
Program
Reuse*

A S P E N R D O C U
R P T M O N B D O C U
T G S I R D O C U
T G S 1 R D O C U
W R T T B L R S O R C
C M O N B D O C U
V T H R M B D O C U
L TH R M B D O C U

S R F T E N B D O C U
T H E R M O R D O C U
E O S M O N R S O R C
IG M O N R S O R C
C A L M O N R S O R C

Program Unit Type*

Method of
Program
Reuse*

D F T M O N R D O C U
C L M O N 1 R S O R C
C L M O N 2 R S O R C
C L M O N 3 R S O R C
M O D M O N R S O R C
M D M O N 1 R S O R C
M D M O N 2 R S O R C
M D M O N 3 R S O R C
P L 001 R C O D E
P L 0 0 2 R C O D E

E S 01 R C O D E

ID LG A S R C O D E

* "B" for bridge program unit, “R” for relevant program unit.
* for details see Section 3.2.2

The next step is to associate one or more classes with each program unit, as

shown in Table 4.3. If none of the classes from the current set in the object-

oriented model is associable, then a new class is created and its structure and

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

93

Table 4.3 Selected Program Units and Their Associated Classes

Program
Unit Type1, Classes

PL 001 R e x te n d o d _ a n to ln o

P L 0 0 2 R c a v e t t _ v a p o r _ p r e s s u r e

P S 0 0 1 R s o l ld _ a n o to ln e

V L 004 R r a c k e t t

VL201 R c a v e t t

KL002 R s a to _ r e ld e l

KL201 R v re d e v e ld

M U L001 R a n d r a d e

M U L201 R lo g _ a v e r a g e _ m lx ln g

M U V 001 R c h a p m a n _ e n s k o g

M U V 201 R b r o k a w

M U V 202 R d e a n _ s t l e l

G M 01 R s c a tc h a r d _ h l ld e b r a n d

G M 03 R W ilson

G M 04 R v a n l a a r
G M 05 R r e n o n

PH L001 R g r a y s o n _ s t r e e d

S IG 002 R h a k lm _ s t l e n b e r g _ s t le l

S IG 201 R p o w e r_ la w _ m lx ln g

DL101 R w llk e _ c h a n g

DV 001 R c h a p m a n _ e n s k o g _ w l lK e J e e

D V 0 0 2 R d a w s o n _ k h o u ry _ k o b a y a s h l

D V 101 R b la n c

E S01 R r e d l l c h .k w o n g

ESOO R I d e a l j j a s

ID LG A S R Id e a l _ £ a s _ h e a t _ c a p a c l t y

Program
Unit Type1, Classes

A S P E N R _

R P T M O N B -

T G S I R p p _ t a b l e s *

T G S 1 R t a b l e *

W R T T B L R t a b l e *

C M O N B -

V T H R M B -

L T H R M B -

S R F T E N B -

T H E R M O R o p t lo n _ s e t*

E O S M O N R a n ln d e x e d _ c o lle c t lo n

IG M O N R I d e a L g a s

C A L M O N R o p t lo n _ s e t*

D F T M O N R a n ln d e x e d _ c o lle c t lo n

C L M O N 1 R a n In d e x e d c o l le c t io n ,
A P _ m e th o d _ 1 _ t ,

A P _ m e th o d _ 1 _ p

C L M O N 2 R a n ! n d e x e d _ c o lle c t!o n ,
A P _ m e th o d _ 2 _ 1 .

A P _ m e th o d _ 2 _ q

CLMOIM3 R a n in d e x e d c o l le c t io n ,
A P _ m e th o d _ 3 _ 1 ,
A P _ m e th o d _ 3 _ r

M O D M O N R A P m o d e l

M D M O N 1 R a n I n d e x e d .c o l le c t lo n

M D M O N 2 R a n ln d e x e d _ c o lle c t lo n

M D M O N 3 R a n ln d e x e d _ c o lle c t lo n

t "B " (o r b r id g e p r o g r a m u n i t , “R " (o r r e le v a n t p r o g ra m u n it

* t r o m R E O - T G S , o t h e r s a r e n e w c l a s s e s

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

94

dynamics are defined. A list of associable, new and old, classes for the selected

program units is shown in Table 4.3. The following paragraphs discuss the deriva

tion from a couple of selected program units illustrating the application of each

method of reuse in Icape-91 (derivation from all selected program units is rather

complex and would be wearisome to read.)

CODE: PL001 to IDLGAS

The following discussion is mainly about PL002 instead of all directly reu

sed program units. The modeling of shared data is discussed first, and then the

program unit itself. The COMMON blocks for some of these program units are

listed in Ihble 4.4; the ones that are specific to the program unit, that is, those not

found in others, are highlighted. The first entiy in the table for the class exten-

ded_antoine associated with the subroutine PL001 lists the attributes global, ncomp,

and coeff (to be defined) for the COMMON blocks GLOBAL, NCOMP, and

PLXANT, respectively. The data declaration for the highlighted COMMON block

PLXANT is found only in PL001. Similarly, the entry for the class cavett_va-

por_pressure associated with the subroutine PL002 lists the five attributes global,

ncomp, tc ,pc, and coeff for the COMMON blocks GLOBAL, NCOMP, TC, PC,

and PLCAVT, respectively. The highlighted COMMON block PLCAVT is found

only in PL002.

The classes for the COMMON blocks are defined based on descriptions in

programs and manuals, most of which are informal. The specifications for some of

the COM M ON blocks from those listed in Table 4.4 are given in Figure 4.14. The

COM M ON blocks COMP, TC, PC, ZC, PLCAVT, FRMULA, and LJPAR (and

MW, VC, TB, VB, OMEGA, and STKPAR not in Figure 4.14) hold arrays of val

ues for various universal constants for chemical compounds. The data in these

COM M ON blocks are ordered identically; that is, TC(4) in TC block, PC(4) in

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

95

Table 4.4 Classes Associated with Program Units for AP Models

Class
Program

Unit Attributes/COMMON blocks

extended_antolne PL001 global/GLOBAL,
ncomp/NCOMP,
COeff/PLXANT

cavett_vapor_pressure PL002 global/GLOBAL,
ncomp/NCOMP,
tc/TC,
pc/PC,
OOaff/pLCAVT

solld_antoine PS001 global/GLOBAL,
ncomp/NCOMP,
Cdeff/PSANT

rackett VL004 global/GLOBAL,
ncomp/NCOMP,
ppglob/PPGLOB,
tc/TC,
pc/PC,
Coeff/RKTZflA

indicates attributes or COMMON blocks that are
not shared with other classes or program units

PC block, and C(3,4) in PLCAVT block store data for the same compound given

in COMP(4) in COMP block. This relationship can also be inferred by examining

the iteration structures in the source code, if the documentation is lacking. Thus,

the order of data in COMP can serve as an index to data in TC, PC or others

holding data about chemical compounds. As shown in Figure 4.15, the new classes

global, rglob, ncomp, and ppglob are defined based on the specifications d l to d4 in

Figure 4.14 for the COMMON blocks GLOBAL, RGLOB, NCOMP, and

PPGLOB, respectively. Similarly, the classes comp, tc,pc, zc, formula, Uparam,

and coeff are defined for the COMMON blocks COMP, TC, PC, ZC, FRMULA,

LJPAR, and PLCAVT, as specified in d6 to d l2 (the classes for MW, VC, TB, VB,

OMEGA, and STKPAR are not shown). Corresponding to the ordering relation

ship between data in these COMMON blocks, a relationship between the attrib

utes of associated classes is defined (see the dashed line connecting the boxes for

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

96

for d1 (see Figure 4.14) for d2 for d3 for d4

global

kflgl = 0
kflg2 = 0

for d6

components

comp J J -------------
i

fo rd IO <a,ll" sH

formula 1
1

form ula(3]} } — -1
1

for d l l 1

LJParam
1
1

l|param {2][] — J
1

for d7
1
j

tc 1

t e l l ------------------
1

n

for d8
1
|

P C 1
1

pcj] ------------ _ i

rglob

rmlss = 1,0e+7
rmln = 1.0e-15
absmln = . ..

ppglob

p re f= 1.01324e+5
tref = 298.0
Rgas = 8.314e+3
boltzK = 1.38e-23

ncomp

nncc

order}

Similar structure & relationship.
Thus, replaced with class that abstracts the
structure and relationships (SIMP-4 rule).

array_collectlon

dat[]

J

Abstracting structure of
components, tc, pc, etc.

index
indexed collection

£
data array_collectlon

unaryJndexed_collection

A

9
component_collectlon

unary_indexed_array_collectlon

Abstracting relationships between
components, tc, pc. etc.

i $ i i § indicates that the
Item Is dropped/replaced

^una(unary _lndexed_array_collectlon)
formula "

C(unary indexed collection^

. ~ t c J ({i

^uns(unary_lndexed_array_collectlon)
LJParam -

(component collection)
components D

(unary indexed collection
PC

(unaryJndexed collection
zc

(S(unary Indexed collection
mw

/{unary_indexed_array_collectlon)
coeff/PLCAVT

Similarly for VC, TB, VB, OMEGA, STKPAR,
and other COMMON blocks.

Figure 4.14 Some Structural Parts of the REO-TGS Model fo r the COMMON Blocks

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

97

classes components, formula, etc., in Figure 4.15). The model is further trans

formed by applying the SIMP-4 method. The classes components, formula, LJPa

ram, tc, and pc for component data in Figure 4.15 are replaced by classes of higher

abstraction: array collection, indexed_collection, unaryJndexedjcollection, and una-

ryjndexedjm aycollection. The class array collection abstracts the structural fea

ture of each class associated with the COMMON blocks that are defined in d6 to

d l2 ; the structural feature of these classes is that each consists of an array variable.

The class components may be replaced with array collection. Instead, in order to

restrict the data values to a specific range of values, it is replaced with compone-

nt_collection, which is a kind of array collection. The ordering relationship bet

ween the attributes of two classes, component_collection and others, is abstracted

in the class indexed_collection. This relationship is further constrained to a func

tional dependency between a key value and a data value, scalar or vector, in the

subclasses unary_indexed_collection and unary jndexjed_anoycollection. This rela

tionship is constrained to be a functional dependency between a pair of key values

and a data value in the class binary_indexed_collection%, such a class is for the COM

MON blocks that store binary (for a pair of components) parameters. The same

procedure is repeated with other COMMON blocks in other program units under

the CODE method.

As regards the dynamics of these classes, none of the selected program

units affect the data in the COMMON blocks TC, PC, etc. (these data are only

read by PL001, as one can readily infer by a visual scan of the program). New

methods for these classes are required to manipulate these objects and maintain

the relationship between index and data attributes. Consequently, four methods

are defined: indexedby to bind an indexing object, atput to insert data for a particu

lar key value, atreplace to update data for a particular key value, and at to retrieve

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

98

data for a particular key value. The specifications of these methods, the number

and type of arguments, are different for different subclasses of indexed_collection.

A method set with two arguments, the attribute name and a value to be assigned to

the attribute, is created for the classes global, rglob, ppglob, and ncomp. Any

update, of course, should also satisfy any “intra-class” constraints between the

attributes.

d1) COMMON /GLOBAL/ KPFLG1, KPFGL2, KPFLG3, LABORT. NH IRNCLS
d2) COMMON /RGLOB/ RMISS, RMIN, ABSMIN, SCLMIN, XMIN, HSCALE...... TNOW
d3) COMMON /PPGLOB/ PREF, TREF, RGAS, KBOLT
d4) COMMON /NCOMP / NCC, NNCC. NC, NAC, NACC, NVCP, NVNCP, NVACC, NVANCC
d5) COMMON /PPWORK/ WORK(1)
d6) COMMON /CO M P/ COMP|1)
d7) COMMON /T C / TC(1)
d8) COMMON /P C / PC(1)
d9) COMMON /Z C / ZC(1)
d10) COMMON /FRMULA/ FRMULA(3,1)
d11) COMMON /LJPAR/LJPAR(2,1)
d12) COMMON /PLCAVT/ C (4,1)

Note: A dimensfon of an array In COMMON
block is stated to be 1 In d5 to d11,
since the actual size Is determined In
some other program unit.

Relationships:

The data structures defined by d6 (COMP) to d11 are related. The order of data defined by d6
(COMP) Is the same as that defined by d7 to d11 along the last dimension (of size 1).
Thus, the order of data In COMP can serve as an index to data In TC, PC, ZC, FRMULA, LJPAR.

COMMON Specifications

Figure 4.15 Data Specifications Given in the TGS Program Units

Recall that certain attributes associated with the COMMON blocks are

shared with other classes (see Table 4.4), and these can be aggregated. A list of

common attributes in various program units is prepared, as shown in Figure 4.16.

The objects from this list that are related are aggregated into new classes; for

example, the object comp that is an instance of class component_collection is part

o f objects such as tc and pc (comp serves as an index of tc, pc, etc., as shown in the

class unaryJndexed_collection in Figure 4.15). The class universal_constants is

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

99

created (see Figure 4.16) for this aggregation of objects that share an instance of

componentjcollection as their indexing object. The rest are aggregated into

another class called aspen (because the COMMON blocks GLOBAL, RGLOB,

NCOMP, and PPGLOB are specific to the ASPEN simulator). This reorganization

is reflected in all other classes for AP models; the common attributes are replaced

with (fewer) attributes that hold instances of the new aggregate classes aspen and

universaljconstants.

extended antoine

global \GLOBAL
ncomp \NCOM P

cavett_vapor_pressure

global \GLOBAL
ncomp \NCO M P
tc \T C
.pc NPC

Collecting
the ones
that are
shared.

and others for
program units
for AP models

attributes common to

various classes

global \GLOBAL
ncomp \NCOMP
rglob NRGLOB
ppglob NPPGLOB
comp NCOMP
m w NMW
tc NTC
pc NPC
zc NZC
VC NVC
tb NTB

NVBvb
omega NOMEGA
mup NMUP
vlcvtl NVLCVT1
formula NFRMULA
LJparam NLJPAR
STKparam \STKPAR J

The
remaining
attributes.

Attributes
related to
comp (see
Figure 4 .15).

Replacement

cavett_vapor_pressure

global \GLOBAL
_ ncomp NNCOMI
Tc n

coeff \PLCAVT

aspen

global \GLOBAL
ncomp \NCOMP
rglob NRGLOB
ppglob NPPGLOB

universal. constants

comp NCOMP
mw NMW
tc NTC
pc NPC
ZC NZC
VC NVC
tb NTB
vb NVB
omega NOMEGA
mup NMUP
vlcvtl NVLCVT1
formula NFRMULA
LJparam NLJPAR
STKparam NSTKPAR

nltr : aspen

const : universal constants

Figure 4.16 Aggregation of C la sses’ Attributes for the Shared COMMON
Blocks in the Program Units

Turning attention back to the program itself, consider the subroutine PL002

and its associated class cavett_vapor_pressure (see Figure 4.17). The primary func

tion of PL002 is the calculation of pure component vapor pressure in the liquid

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

100

KDIAG, PVAP, DPSUBROUTINE PL00 NCP, IDX, NDS

COMMON /GLOBAL/KEFLG1, KPFLG2,
COMMON /TC/TC(1) \ ^
COMMON /PC/PC h|
COMMON /PLCAVT/CM.1)
COMMON /NCOMP/NCC, NNCC

RETURN
END

PL002: a FORTRAN subroutine source

aspen

ncomp

mixture

Idxmcpl

universal constants

comp : component_collectlon

tc : Indexed unary collection
pc : lndexed_unary co+->offlo01

 1
mlxture_property

prop [J : number
ddT[] : number

C lasses of shared or internal objects

cavett_vapor_pressure

Simltr : aspen

. c o e ff : unary_indexed_collection

’ univ_const : universal_constants

‘ mixt : mixture

‘ pvap : mlxture_property

1) sim ulators : aspen)
b s consists of objects for GLOBAL and
b NCOMP

2) ucdbfu : unlversal_constants)
b u consists ot objects for TC and PC

3) parameter of (Cllst) from (pprdr)
b retrieve data for coeff for
b components In cllst from pprdr

4) asslgnCOMMONO
b link suitable representations of
b objects to symbols for COMMON
'' blocks

5) mlxture(m)
b m consists of data for subroutine
b parameters

6) update!) \PL002
b call PL002 subroutine

Constraints
4 ,s oefore 6 .
1,2 before 4
2 before 3

Methods Interface

Figure 4.17 Application of the CODE Method to the Program
Unit PL002

phase using the Cavett equation. The aggregate of subroutine param eters T, IDX,

NCP, etc., of PL002 is modeled by the classes mixture and mixture_property, the

form er for input parameters and the latter for output parameters. Definition of

this class is easily derived from data specifications, type and size, that are readily

available in the source code or program documentation. As shown in Figure 4.17,

six methods are created to model events concerning the PL002 program:

1. simulator, to assign an instance of class aspen that consists of objects for

the COMMON blocks GLOBAL and NCOMP;

2. ucdb, to assign an instance of class universal_constants that consists of

objects for the COMMON blocks TC and PC;

3. parametersoffrom, to provide an object to retrieve data for the attribute

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

101

object coeff from a simple databank file or PP database

4. assignCOMMON, to assign data—from objects held with the attributes

global, ncomp, tc, pc and coeff— to the symbols in the directly reused code for the

COMMON blocks GLOBAL, NCOMP, TC, PC, and PLCAVT, respectively;

5. mixture, to assign data to attributes associated with the subroutine

parameters; and

6. update, in which the subroutine PL002 is called to update objects.

In addition, constraints on the order of executing these methods are specified in

the method interface. Other program units, PL001 to IDLGAS in Table 4.2, are

similarly processed. The classes mixture jproperty and mixture are used to represent

the subroutine parameters in each case.

SORC: CLMON1, DFTMON

The compiled form of these program units is not directly reused; it is more

advantageous to give an equivalent object-oriented program. First CLMON1,

then DFTMON is covered. The subroutine CLMON1 consists of only one case

statement (in its executable part). The segment of its source program for each

case block consists of some local computations in addition to calls to other subpro

grams; thus, one requires new classes for the case blocks. As illustrated for

CLMON1 in Figure 4.18, each case block of the case statement is associated with

a new class that is named after the thermodynamic derivation it represents. The

case statement itself is associated with an instance APmethod_colln_l of the class

indexed_collection, and it consists of a collection of instances of classes for different

case blocks. The subroutines CLMON2 and CLMON3 are similar to CLMON1,

so are reused similarly. To simplify further, the objects APmethod_colln_l, APme-

thod_colln_2, and APmethod_colln_3 for CLMON1, CLMON2 and CLMON3 are

replaced by a union object APmethod_colln.

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

102

c . . .
S U B R O U T IN E C L M O N 1 (. . .)

C . . .
...................... G O T O (1 0 ,2 0 ,3 0 , . . . 1 6 4 0) IX

r 40:: :
J IF (KCO) PHILO) = . .

I G O T O 1 6 6 0
L 9 0 . . .

i'f '(KCO) PHILPC(I) = .

G O T O 1 6 6 0

1 6 6 0 IR E T N = 2
R E T U R N
E N D

CLMON1: a FORTRAN subroutine source

(lndexed_collectlon)
APmethod_oolln_1

index : array_collection
data : arrayjcollectlon

(from_satdVLE) ^ (from_VdP_lntegraiP^ ■

an object named APmethod_colln_1

- — » from satdVLE

u p d a t e) . . .)

I-------- 1

Saturated VLE equation

<P?L = W VP °L$ L)IP

from_VdP_integral

u p d a t e) . . .)

Poynting correction

lnflpi = - ^ = f v f Ld P
' R T JpOL '

£> m = A P m e th o d _ e o lln _ 1 < - a t (m t h d .n a m e = 'f r o m _ s a td V L E ')

> m < - u p d a t e

code in pseudo-language with
behavior equivalent to CLMON1

(indexed_collection)
APmethod_colln_1

f o r C L M O N 1

(lndexed_collection)
APmethod_colln_2

l o r C L M O N 2

((lndexed_collectionM
APmethod_colln_3^/

f o r C L M O N 3

Different Instances of
the same class
replaced by a union.

((lndexed_collectlonA
APmethod_colln

Figure 4.18 Application of the SORC Method to the Program Units CLMON1,
CLMON2 and CLMON3

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

103

The definition of the classes associated with different case blocks is compli

cated. Presently, there is no known procedure to translate source code in tradi

tional imperative language into an object-oriented modeling or programming lan

guage. Although, some of the following associations can be considered. It is clear

that every subroutine call may be associated with an attribute referencing an

object associated with the subroutine parameters that are updated. As an exam

ple, consider the case block for computing the Poynting correction of liquid phase

fugacity (see Figure 4.19) and its associated class from_VdP_integral. The source

segment consists of two subroutine calls to calculate data named PL and VLINT.

Thus, two attributes are created to reference objects representing these data. The

two attributes could have been proposed based on the equation for the Poynting

correction; the equation can be viewed as consisting of two terms, the vapor pres

sure of liquid and the integral of molar volume with respect to pressure. (Note,

however, that this involves knowledge which is not implicit in the source program,

and thus requires human intervention.) In addition, the case block contains refer

ences to data in the COMMON blocks PPGLOB, RGLOB, and GLOBAL that

already have representations in the REO -TGS model. Thus, attributes should be

added to the class from_VdPJntegral to hold instances of ppglob, rglob, and global.

Instead, the attribute simltr is added to hold an instance of aspen that aggregates

ppglob, rglob, and global. Similarly, the attribute mixt is added to hold an instance

of mixture since the source segment contains references to the data already repre

sented in R EO -TG S by mixture. As regards operations on this class, methods are

created to attach instances of aspen and mixture. The source segment o f this case

block is also represented by the method update, as specified in Figure 4.19, the

eventual effect of which is equivalent to updating PHILPC. In this fashion, each

case block in a case statement of CLMON1, CLMON2 and CLMON3 is modeled.

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

104

A complete list of such classes, along with a typical thermodynamic equation, is

shown in Table 4.5. Each class in this table represents an equation, of thermody

namics or transport, parameterized over the physical property computed. Parame

terization, of course, reduces the number of classes one would require; for exam

ple, the class from jnixing can be easily used in creating a suitable instance object

for the calculation of enthalpy of liquid phase, hL, besides free energy of liquid

phase, gL, as shown in Thble 4.5.

Code for a case in the case statement in CLMON1

Figure 4.19 Application of the SORC Method to Segments of
the Program Unit CLMON1

The subroutine DFTMON is structured similar to CLMON1 discussed

above; thus, it is modeled in the same manner as DFTMON by creating the class

prop_data_colln. Furthermore, as shown in Figure 4.20, the equivalent classes

associated with different case blocks such as phivmx, phiv, and philmx are replaced

by the structurally equivalent class propjdata. The attribute index of the class

prop_data_colln collects property names that correspond to the statement labels for

G O T O (1 0 ,2 0 ,3 0 , . . .1 6 4 0) IG O T O

G O T O 1660
9 0 LM BDIR = IB IL R R K + 5)

LBB = IBILM BD IR + 1)
CALL M O D M O N (N , IDX, X , P L , D U M) ,
D O 1 0 0 I = 1 , N
IF (K C 0) P l(l) = D E X P (P L (I))

0 0 IF KC1 PI ID1 + 1) = P l(l) • PL(ID 1 + 1)

from_VdP_lntegral

mixt : mixture
simltr : aspen
vap_pres_eqn
volume_eqn

LBB = IBILM BD IR + 2)
CALL MODMON (N, fDX, X, RW(KRWO + 1, VLINT) •* --------
IF (NORT) RT = RGAS * T
NORT = .FALSE.
DO 110 I = 1, N
IF (KC0) PHILPC(I) = VLINT(I)/RT

110 IF (KC1 j PHILPC(ID1 + 1) = (VLINT(ID1 + 1) - VLINT(I)/T) / RT
KP = 0
GOTO 1660

1660 IRETN = 2
RETURN
END

d d T o f p h llp c s . . .
2) s i m u l a t o r (s : a s p e n)
3) m ix tu r e (m :m f x tu re)

Poynting correction

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

105

Table 4.5 Classes Dervied from the Program Units CLMON1, CLMON2, and CLMON3

No. Class1"
A Typical

Thermodynamic Equation

Attributes for
other AP models
and AP methods

1 from_VLE
gamma eqn
phil_eqri"
gamma_pc_eqn

2 from_VdP_lntegral In BPl = f vfLdP
R T) pol '

vol eqn
vap_pres_eqn

3 from_acltivlty hEL m _RT2 y
4 L BT actlvlty_coeff_eqn

4 from_fugaclty fugaclty_coeff_eqn

5 from_ldealgas_departure sw = soic + Atov Idealgas eqn
departure_eqn

6 fromjnaxwell h eqn
gleqn

7 from_mlxlng s'- = + RT]T*iln jr; +
i i

component_eqn
excess_eqn"

8 from_satdVLE ,OL _ W *
Vi p ~

phiv eqn
vap pres eqn
phl_pc_eqn

9 from_vapor M ° l = Alifv[T,pfL) - AhfVAP(T) + t f L[T,P)
dep vapor eqn
vaporization eqn
press_corr_eqn

t The names of these classes begin with “from " to Indicate that they represent
thermodynamic derivations.

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

106

different case blocks. The case blocks consist of mutually exclusive segments

(there is no control dependency between them), each consisting of an assignment

statement to update the value of a temperature derivative of the corresponding PP;

the first is for the physical property itself, the second is for its first-order tempera

ture derivative, and the third is for its second-order temperature derivative. Thus,

the attribute prop for propjdata can be decomposed into three distinct attributes:

prop for the physical property, ddT for its first-order temperature derivative, and

d2dT2 for its second-order derivative.

As regards dynamics, the source program statements for each case consists

of assigning default zero values to different temperature derivatives. This is mod

eled by the methods default, default ddT, default d2dT2 or defaultall to set the

attributes prop, ddT, or d2dT2 to default values. The complete source program is

then associated with two message expressions: (1) one containing the message at to

choose an object from the collection of propjdata instances; and (2) the messages

default, default ddT, default d2dT2 or defaultall for the update of the chosen object.

DOCU: CALMON, THERM O

In this case, the first step is to identify one or more classes consisting of

attributes associated with the data that are either referenced or updated, and the

second step is to specify methods that model the effects, as described in the man

ual or in a high-level requirements specification language, of the program unit.

First CALMON is covered, then THERMO.

The description in the manual states that the function of CALMON is to

compute various PP’s for a given option set. Since CALMON references data in

a particular option set, it is associated with the new method update2 for the class

option_set.

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

107

S U B R O U T IN E D F T M O N (N , ID X C T . KCO, K C 1 , K C 2, ID1, ID2)

G O T O (1 0 ,2 0 ,3 0 , . . . 3 0 0) ID X C G T
10 D O 15 I = 1 . N

IF (KCO) PH IV M X (I) = 0 D 0
IF KC1 P H IV M X 0D 1 + I = ODO

= ODOIF K C 2) P H IV M X (ID 2 + I
15 C O N T IN U E

G O T O 10 0 0
2 0 . . .

9 0 IF (KCO) H L X S 1 = ODO
IF K C 1) H L X S 2 = ODO
IF (K C 2 H L X S 3) = ODO

1 0 0 0 R E T U R N
E N D

phivmx}} : num

dafauJt*)

p m

phiV}] num ;

defau lt! >

DFTMON: a FORTRAN subrouting source

(lndexed_collectlon)
prop_data_colln

Index : array_collectlon
vdata : arrayjcollectlon

c(prop_data)
phlvmx

(prop_data)
phiv

hlxs[l : num
cafau lt(}

Replace by prop_data
(application of SIMP-4 rule)

prop_data

An object named prop_data_colln

l> m = p r o p _ d a ta _ c o l ln < - a t (p r o p _ n a m e = ‘p h iv m x ')

> m < - d e f a u l t

prop[] : num

d e f a u l t ! . . .)

Code in pseudo-language with
behavior equivalent to DFTMON

The above is for mutually exclusive segments within a case block

m = p r o p _ d a ta _ c o l ln < - a t (p r o p _ n a m e = ‘p h iv m x ')

m < - d e f a u l t d d T
ft o r
m < - d e f a u l t d 2 d T 2
o r
m o d e f a u l t a ll

code in pseudo-language with
behavior equivalent to DFTMON

prop_data

prop[] : num
ddT[] : num
d2dT2[] : num

1) d e f a u l t ()
2 d e f a u l t d d T f)
3 d e f a u l t d 2 d T 2 ()
4) d e f a u l t a l l ()

Figure 4.20 Application of the SORC Method to the Program Unit DFTMON

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

108

The procedure of this program unit as described in the manual consists of:

retrieving the statement labels of the case blocks—of the case statements of the

subprograms CLMON1, CLMON2, CLMON3 and DFTMON for the given PP’s

to be computed and the option set.

These statement labels are stored in the entries, one for each PP, in the

resolved route bead. (A resolved route bead consists of control information that is

computed from an option set. There is one such bead for eveiy combination of

the three data items: the physical property, codes for the temperature derivatives

and integrals over pressure of the physical property, and the option set.) In terms

of the object-oriented model developed so far, these statement labels are asso

ciated with names of the classes which in turn are associated with the case blocks

of the case statement in the subroutines CLMON1, CLMON2, CLMON3 and

DFTMON. Thus, the procedure for the method update2 consists of: retrieving the

names of the specified class and its instance in the object prop_route_colln, for the

given P P ’s to be computed and the option set.

The name of the class for computing a physical property (under a particular

option set) is specified in the class propjroute; accessing this information violates

the principle of information hiding. An alternative procedure for the method

update2 is to leave the responsibility of retrieving the instance of the required

class, from the propjoute_colln object, with the class prop_route (see Figure 4.21).

Furthermore, to hold the objects retrieved from prop_route_colln, propjoute is

assigned the new attribute mdl and the new methods modelsource and update.

Thus, the procedure for update2 in option_set consists of: retrieving an instance of

prop jou te and in turn requesting an update based on information that is internal

to the retrieved prop jou te instance, for the given PP’s to be computed and the

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

109

option set. The method update can also be recursively structured, since the class

prop_route itself is recursively structured.

In searching for instances of prop jou te in option_set, only a limited number

can be found in the attribute m ajorjpropjoute. However, recall that instances of

p ro p jo u te form a directed acyclic graph (see the model in Figure 4.13 on page

78). Thus, one should examine all instances of propjou te that are reachable from

major_propjoute in option j e t . Recursive search is avoided by adding the new

attribute prop jo u te j o l l n which represents all the reachable instances of

p rop jou te from an instance of class option j e t . This new attribute holds a collec

tion from which an instance of propjoute is retrieved through an index of PP’s.

optlon_set prop_route

major_prop_route[] : prop_route
prop_route_colln : indexed~collectlon
prop_data_oolln : Indexed'oolleotlon

prop_kwd : prop_kwd
method_code : number
mdl_spec[] : text
prop_route[] : prop_route

mdl_name : text
mdl : ako PP_model1) u p d a te 2 (p p _ l i s t []) \ C A L M O N

t o r e a c h p p in p p j l s t (
d = p r o p _ d a ta _ c o l ln < - a t (p p)

d <- d e f a u l t \ c a l l D F T M O N
r t = p ro p r o u te c o l ln <- a t (p p)

r t < - u p d a t e \ c a H C L M O N 1
1) m o d e l s o u r c e lp : p h y s lc a l_ p ro p e r ty _ s y s te m)

m d l = p <- a t (m d l n a m e)
2) u p d a t e d \C L M O N 1 , . . .

m d l <- u p d a te

Figure 4.21 The Result of Applying the DOCU Method to the Program Unit CALMON

The subroutine THERMO, according to the manual, references data for

option sets. This is also verified by a visual scan of the source code. Thus, TH E

RM O is associated with the method updates of the class option j e t .

The main function of THERMO, according to the manual, consists of

route resolution and overall calculation control. The route resolution, for a given

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

110

option set and codes of various temperature derivatives to be computed for PP’s,

results in construction of resolved route beads. The overall calculation control

simply passes the execution control to the subroutines IGMON, EOSMON and

CALMON that carry out the computation according to the information in the

resolved route beads. The called subroutines, already covered in REO-TGS, do

not require any resolved route bead. In fact, route resolution is irrelevant to logi

cal data modeling because it is designed to provide control information only to

improve the performance; the idea underlying route resolution is to collect multi

ple expected calls to the same subroutine into a single call. Thus, the route resolu

tion step is discarded, and the method update3 consists only of message expressions

that correspond to the subroutine calls IGMON, EOSMON and CALMON (see

Figure 4.22).

optlon_set

u p d a t e 3 (. . .) \T H E R M O o r T X P O R T
ld e a l_ g a s < - u p d a t e 2 \ c a l l IG M O N
s e l f < - u p d a t e d (. . .) \ c a l l E O S M O N & C A L M O N

Figure 4.22 The Result of Applying the DOCU Method to the Program Unit THERMO

4.6 Design and Implementation in VSM

Icape-91 is designed and implemented, based on the REO -TG S model, in

VSM. In this section, some aspects of this design are discussed, but first a short

introduction to VSM is in order. (More details on a VSM design are given in

Appendix B.)

Reproduced w ith permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

I l l

VSM provides two main kinds of objects [Yamashita, 1987]: a vsm module,

as it is called, to interface with a foreign module; and a Generic D ata Structure

(GDS) for object-oriented programming. In terms of REO, the vsm module is a

construct to interface with the foreign module for virgin reuse or direct reuse.

FORTRAN subroutines are included by interface procedures (for which C is the

recommended language in version 1.1 of VSM), and interface procedures are cata

logued as vsm modules in lieu of the FORTRAN subroutine itself. Some pre

processing of foreign modules is required for the dynamic linker-loader of VSM.

A vsm module is developed in three steps: first, the vsm module is implemented;

second, the vsm module and related object codes are catalogued or described in a

catalog file; and finally, the catalog file is processed to create an overlay file that

can be dynamically loaded into the system. For a highly flexible and dynamic sys

tem, VSM provides a construct that allows one to assign dynamically, during run

time, new data values to various symbols in the foreign module. With dynamic

symbols, one can overcome the constraint of static allocation of COMMON blocks

in FORTRAN. The use of dynamic symbols involves replacing the ordinaiy, static

symbols (symbols that are resolved by static linking will be referred to as static

symbols) declared as “external” (that is, defined elsewhere) with “dynamic sym

bols,” thereby permitting the dynamic linker-loader to take appropriate steps.

(The symbols that are not declared as external may be replaced by simple editing

tricks with new external symbols.) The programming involves two steps: first, the

declaration of dynamic symbols; and second, the redirection o f the original static

symbols to these dynamic symbols.

The concept of GDS is similar to that of class in object-oriented languages:

Analogous to class, GDS has instances, instance variables, class variables, instance

methods, and class methods. (Many other capabilities of GDS are not considered

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

112

in the Proto-ICA PE Project.) While naming various objects, “domain-friendly”

and non-ciyptic names are preferred over those that are adopted from the system

that is integrated. For example, a preferred name for the GDS for the class com

ponent is chemical_component; the previous name is too general compared to the

new one. Similarly, the preferred names for GDS’s that represent the classes glob

al and rglob are integer_global_aspen and realjglobal_aspen, respectively.

Vsm modules are designed for the directly reused program units to which

the CODE method is applied, and GDS’s are designed for all classes in the R E O -

TGS model. In this section, one example including the design of both vsm mod

ules and GDS’s is described. The example chosen is the subroutine PL001 for cal

culating vapor pressures of components in a liquid phase through the Extended

Antoine model (see Figure 4.23). The vsm module for interfacing with PL001 is

called XANT. It is developed in three steps: first, an implementation of the vsm

module XANT is developed in C; second, this and related object codes are cata

loged in the XANT.cat file; and third, the catalog file is processed into an overlay

file XANT.ov for dynamic loading. For a highly flexible system, it is desirable to

be able to assign new data values to the (statically sized) COMMON blocks

GLOBAL, NCOMP, and PLXANT in the PL001 program unit. Thus, these sym

bols are replaced by dynamic symbols in two steps (see Figure 4.23): first, declara

tion of the dynamic symbols XANT_global, XANT_ncomp, and XANT_coeff; and

second, redirection of the original, static symbols to the dynamic symbols.

A GDS design for the class extended._antoine and its superclass PP_model is

shown in Figure 4.24. The GDS PPjnodel definition contains slots in the instance

block for each of the attributes simltr, ucdb, and mixt. For generality’s sake, the

type of instance variables is set to the type ptr (this holds a reference to an object

in the object table, and is not the same as the address pointer of C programming

Reproduced with permission of the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

113

symbols denoting.
COMMON blocks

c ...
S U B R O U T IN E P L 0 0 1 (. . .)

C . . ■
C O M M O N /G L O B A L /.
C O M M O N /P L X A N T / . . .
C O M M O N / N C O M P / . . .

PL001 PL001.0f77
FORTRAN compiler)

plOOl .f, a FORTRAN source file
(to be directly reused)

symbols denoting
called subprograms

" _global_
~ncomp_
jjlx a n tj"

r _error_
JerrpF

4 Jog
_pow

X A N T ()

p o p j/p d ;
pop mlxt()
plOOl_ (. . . .

return 1;

defined
elsewhere

.direct reuse of
a subprogram

XANT.c cc
(C-compller)

Symbols in plOOl .o
object file

XANT.o

XANT.c, a C source file

Implementation of VSM Module XANT

XANT. cat object XANT.ov
(a preprocessor) JL »-

Icape91/XANT
XANT XANT

%XANT_global
%XANT ncomp
%XANT~coeff

@global_ XANT_global
@ncomp_ XANT_ncomp
@plxant_ XANT~coeff

plOOl

error ■)
lerrpt j

*/usr/llb/llbl77_p
*/usr/llb/llbF77
*/usr/llb/llbc

XANT.cat, a VSM catalog file

name of the object file containing the
Interface procedure (see above)

definition of the C-functlon XANT, an
Interface procedure, as a vsm module XANT

declaration of dynamic symbols (prefix “%"
marks the dynamic symbol)

substitution of symbols for COMMON blocks by
dynamic symbols (prefix Indicates substitution)

name of the object file containing
procedures to be directly reused

names of object files containing
other called procedures/functions

names of library files (prefix
library file name)

vsm modules

indicates

dynamic symbols

XANT

XANT_global
XANT ncomp
XANT~coeff

modules and dynamic
symbols in XANT.ov

overlay file

Definition of VSM Module XANT

Figure 4.23 A VSM Module for lcape-91

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

114

APmodel

simltr : aspen
ucdb : universal_constants
mlxt : mixture

1) s i m u l a t o r s : a s p e n)
tt o b j e c t s to r G LO B A L , R G L O B , e t c .

2) u c d b (u : u n iv e r s a l c o n s t a n t s)
tt o b j e c t s fo r CO M FT T C , P C , e t c .

3) p a r a m e t e r o t (C lls t) f ro m (p p rd r)
tt r e t r i e v e d a t a fo r c o m p o n e n t s In

c l l s t f ro m p p rd r

4) a s s lg n C O M M O N))
tt link s u i t a b l e r e p r e s e n t a t i o n s o f

o b j e c t s t o s y m b o ls t o r C O M M O N
b lo c k s

5) m lx tu re (m)
tt d a t a fo r s u b r o u t in e p a r a m e t e r s

6) u p d a t e d
tt c a l l fo re ig n c o d e s u b r o u t in e

C o n s t r a in t s
ii e ,o Deiore 6

2) 1 ,2 b e f o r e 4
3) 2 b e f o r e 3

A
extended antoine

coeff : unary_lndexed_collection
pvap : prop_data

3) p a r a m e t e r o f (C lls t) f ro m (p p rd r)
tt r e t r i e v e d a t a fo r c o e f f fo r

tt c o m p o n e n t s In c l l s t f ro m p p rd r

4) a s s lg n C O M M O N ()
tt link s u i t a b l e r e p r e s e n t a t i o n s o f
tt o b j e c t s t o s y m b o ls to r C O M M O N
tt b lo c k s

6) u p d a t e d
tt c a l l PLOl01

Parts of REO-TGS model

GDS physical property_model
INSTANCE { ~

ptr simltr
ptr ucdb
ptr mlxt

}
METHOD (
s i m u l a t o r (s : a s p e n)

s im l t r = s < - a d d r e s s
>
p p d a t a b a s e (d : u n i v e r s a l_ c o n s t a n t s)

u c d b = d < - a d d r e s s
)
p a r a m e t e r s o f (c o m p s) f ro m (p p rd r)

tt d o n o th in g

a s s lg n C O M M O N ()

tt d o n o th in g

m ix tu re (m : m ix tu re)

m lx t = m < - a d d r e s s
)
u p d a t e ()
I

tt d o n o th in g , s u b c l a s s r e s p o n s ib i l i ty

/
END

GDS extended antoine IS physlcal_property_model
INSTANCE {

ptr
ptr

coeff
pvap

METHOD {
p p d a t a b a s e (d : u n iv e r s a l c o n s t a n t s)
(

s e l f < - s u p e r p p d a t a b a s e (d)
c o e f f < - In d e x e d b y (d < - c o m p o n e n t s)

p a r a m e t e r s o f (c o m p s) f ro m (p p rd r)

x = p p rd r < - g e t ('e x t e n d e d a n t o i n e ') ('c o e f f ') o f (c o m p s)
f o r e a c h e In x {

c o e f f < - a t (e < - c o m p o n e n t) p u t (e < - c o e f f)

) }
a s s lg n C O M M O N ()
I

s im l t r . I g l o b a k - a s s lg n C O M M O N ('X A N T J g l o b a l ')
s i m l t r .n c o m p c - a s s lg n C O M M O N (’X A N T n c o m p ')
c o e f f < - a s s lg n C O M M O N (’X A N T .c o e f f)

u p d a t e ()
(

p v a p < - d e f a u l t a ll
X A N T m lx t p v a p It c a l l in g P L 001 s u b r o u t in e

/
END

GDS Designs for Classes in REO-TGS Model

Figure 4.24 Design of a GDS for lcape-91

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

115

language). The interface specifications of the related methods simulator, ppdata-

base, and mixture adopt the required restrictions on the type of objects attached.

In this “root” superclass, some methods such as update and assignCOMMON have

no effect on its instance variables.

The GDS extended_antoine for the class extended_antoine inherits the struc

ture and methods from the GDS PPjnodel. It has instance variables for each of

the attributes coeff and pvap of the type ptr. The methods pp database, assign

COMMON, and update that affect objects held at the slots coeff and pvap are rede

fined or “refined” to supplement those inherited from the superclass. The method

pp database attaches to the object held at coeff, an instance of componentjcollec-

tion from an instance o f universaljconstants. The method assignCOMMON

attaches to the dynamic symbols a contiguous memory representation of the data

in the objects associated with the COMMON blocks. The method update first

updates the data objects that are passed to the vsm module X A N T with default val

ues, and then calls the vsm module XA N T with the given mixt object to update the

pvap object; the second step is similar to calling a subroutine in FORTRAN.

4.7 Summary

In this chapter, an object-oriented model called R EO -TG S is derived first

from the input language descriptions and then from program descriptions of the

TGS subsystem of ASPEN. The design and implementation of a prototypical

ICAPE system, Icape-91, based on REO-TGS are briefly discussed. With the

“concept to demo” method of research, the Proto-ICA PE Project has demon

strated an entirely new approach, based on software reuse, to object-oriented

modeling for integration in ICAPE.

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

5. Conclusions

116

ICAPE, ICAE, object-oriented programming and software reuse are prom

ising new fields of research. This final chapter presents the conclusions and contri

butions of this research, and makes suggestions for future work.

5.1 Conclusions

The integration in ICAPE involves integration of data and software. The

integration of process engineering data is rather important. To this end, the first

essential step is the development of a model for the management of process engi

neering data. The complex characteristics and requirements of engineering data

can be modeled and met respectively with the help of object-oriented program

ming. However, the development of object-oriented models for large domains

such as process engineering and allied areas is non-trivial; that it should be devel

oped is easier said than done. One approach identified and developed in this

research is to derive the model from the existing software rather than from scratch;

the new model can be improvised subsequently.

The integration of software has certainly caught, perhaps in different dis

guises, the attention of many. Any approach that takes a black box view of tools

to be integrated has many disadvantages, as argued in Section 2.3.2 and discussed

in Section 4.4. The major disadvantage is that one is constrained by all the limita

tions inherent in the design and implementation of tools to be integrated. Any

approach that takes a glass box view of tools to be integrated also has many disad

vantages such as inheriting a legacy of design decisions from the old. Mere mech

anisms for virgin reuse of software components are not enough. (This research

project was partly motivated by mechanisms proposed and implemented by

Reproduced with permission of the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

117

Yamashita [1987].) Some, often substantial, modifications of the tool may be

required to achieve some of the simplest benefits of object-oriented programming.

As argued in this dissertation, the field of software reuse provides a more

general, hence more powerful, framework for solving the above problems.

Researchers in computer science take a linguistic approach to systems to solve any

problem. For instance, computer scientists have developed data models, formal

languages, and systems engineering to achieve data integration. There is no

notion of “data integration” in computer science, so one should view it only as a

desideratum, and not as a construct or basis for building scientific and technologi

cal knowledge. (The view in computer science seems to be that data integration is

achieved by managing data in a database through a DBMS. It is the task of

DBMS to coordinate the use of databases by many users.) Similarly, software

reuse is a linguistic view of the problems of software integration, and hence is a

framework more general than software integration. There is no notion of “soft

ware integration” in computer science, so it should be considered only as a desid

eratum of the field of ICAPE and ICAE. Another reason to adopt a software

reuse perspective is that in this field knowledge is being continuously added that

can be readily brought to bear on problems in ICAE.

A methodology such as REO has many benefits discussed and illustrated in

the preceding chapters. An outstanding benefit is simplification: in the previous

chapter, the final REO -TG S model did not carry many concepts—such as the

categorization of the physical properties into major, intermediate, and subordinate

properties—from ASPEN. REO can also readily accommodate black box

approach to integration.

There are limitations of this research so far. One of these limitations is that

there is no explicit mention of conditions under which the code reused in as-is

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

118

condition may fail in its task. Hence, the model of reused code does not include

“operational” failures. In fact, this project excluded from its scope any consider

ation of error logs to which all program units write.

5.2 Contributions

The Proto-ICAPE Project has made the following contributions to the field

of process engineering, ICAE, and software reuse:

1. This research presents a new analysis of the pressing problem of integra

tion in ICAPE (see Section 2.1). The problem of integration involves three levels:

application, data and software. The integration at the level of data is solved by a

DBMS. The integration of software itself involves different domains of software

engineering that are intermixed in particular software. This intermixing is often

hard-coded in any software for a lack of strict discipline of modularity in con

structs employed or on the part of the designer. It is important in software inte

gration to identify these layers and handle each independently, perhaps discarding

some.

2. Most importantly, this research provides an alternative to the two rather

dogmatically followed principles, the black box principle (thou shalt not open the

program), and the non-modification principle of the glass box approaches (thou

shalt not alter the program) that are implicit in all previous attempts at ICAE in

different disciplines. The limitations of approaches based on these principles are

identified with respect to the goal of developing ICAPE systems that are object-

oriented.

3. This research also develops a software reuse approach that fits nicely

with the goals of ICAPE. It identifies two categories of software reuse techniques:

virgin and processed. Techniques for virgin reuse are often necessary, but are not

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

119

sufficient to realize some “refinement” of the tool. This research develops new

techniques of processed reuse of software components from and to different stages

of the software development life cycle.

4. This research develops a systematic software reuse methodology called

REO. If one follows the REO methodology, one can simultaneously achieve both

the derivation of object-oriented models and the integration in ICAPE. The REO

methodology is applicable to subjects of large scale, as demonstrated in this

research. Presently, it covers two major software components of interest: program

descriptions, and languages for program input and output.

5. This research develops a prototypical ICAPE system, Icape-91, that cov

ers most parts of a subsystem of ASPEN—a decade-old batch system consisting of

a quarter (1/4) million lines of FORTRAN code. Icape-91 includes an object-

oriented model, relational data models and graphical user interfaces; the result of

all this is an object-oriented system that is highly interactive for certain process

engineering tasks that were facilitated by ASPEN.

53 Suggestions for Future Work

1. The success in developing Icape-91 should motivate coverage of other

subsystems of ASPEN; at the present stage, the prototype covers only a subsystem

of ASPEN.

2. A productive development environment, including various CASE tools

to practise REO, would be extremely helpful. It is also important to make use of

or develop extensive class libraries to improve a programm er’s productivity.

3. The field of man-machine interface technologies is rather im portant for

ICAPE and ICAE; in a typical project, this area consumes well over fifty percent

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

120

(50%) of development resources. This area should be examined in detail, espe

cially as it relates to object-oriented programming.

4. ICAE projects can gain a lot from the field of software reuse as shown

through this research. Researchers in organizations such as MCC, Austin, Texas,

who are working in this area could provide valuable experience and tools. Collab

orative projects with them should be undertaken by ICAE researchers.

5. One of the products of this research, object-oriented models, can be

used in research and development projects in the application of object-oriented

database technology, which is growing rapidly, to process engineering.

6. M ost importantly, the success with the software reuse approach and the

R E O methodology in developing the Icape-91 system suggests that a large-scale

ICA PE system, which would resemble the IPAD project in the aerospace industiy,

be undertaken. Such a project should cover various design programs, different

process simulators and their families (such as steady state, dynamic), plant design

systems, mathematical systems, etc. In fact, a need already exists for what is

known as a m ulti-purpose simulator, a kind of concurrent process engineering

tool, to support conceptual process design, detailed process design, control system

design, operator training and even plant operations and maintenance.

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

Appendix A. Object-oriented Model for Icape-91

121

A “REOgenous” (that which is derived with the help of the REO method

ology) object-oriented model, REO-TGS, is presented in the following pages.

The model discussed in Chapter 4 is presented first in Figure A.1 to A.4. Next,

the inter-class diagrams that show inheritance and part-o f relationships between

classes are presented.

The OMT notation is used in these diagrams. Each page shows only part of

the whole diagram if the diagram is too large to fit on one page. The OMT nota

tion is supplemented with the following new constructs:

1. The class that is shown in a dash box is not part of the model, but is

shown to make the diagram “friendlier” for domain experts.

2. The sources of derivation of classes, methods, and messages are anno

tated with a backslash.

3. As a constituent of objects and relationships, one of the subclasses of a

class is represented in a box that is named after the class but prefixed with “ako

to denote “a kind of” constraint. There may be additional restrictions on the con

stituents, such as permitting only specific rather than all subclasses; such restric

tions are not shown in these diagrams.

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

122

pp_tables

tabtype : number
desc : text
heading : text # for the table
pp_mdl : pp_model
system : system
opset : optlon_set
dvars[] : dependent_vars
lvar[] : text
mg[] : ako : range_def

1) c o m p o n e n t s (: a r r a y o f s tr in g)

2) s e t (Iv a r n a m e : s t r in g) (v a lu e s () : v a lu e)

3) t o c a l c u l a t e (: l is t o f d v a r n a m e) (: p h a s e c o d e)

4) u p d a t e (. . .) \T G S 1 & W R T T B L
v a r y Iv ar, In d e p e n d e n t v a r i a b le s , a c c o r d in g to r a n g e
o p t lo n _ s e t < - u p d a t e s \ c a l l T H E R M O

C o n s t r a in t s
1) 1 , 2 , 3 b e f o re 4

system

comp[1 : component
flowj J : number

dependent_vars

varname[] : dvarname
[phases] : phasecode

range_def

/ \

list

vaMist []: number

range

start_val : number
final_val : number
increm ent: number

N o te : T h e F ig u re s A.1 to A .4 sum m arize C h a p te r 4.
T h is is th e h ighest level o f th e R E O -T G S d iagram .

Figure A.l Parts of REO-TGS for PP Tables

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

123

option_set

prop_route_colln : lndexed_collectlon # of prop_route
ppsys : physical_property_system

1) u p d a t e (p p _ l ls t [) : p ro p _ k w d) o t (m : m ix tu re) \C A L M O N
t o r e a c h p p In p p j l s t

d = p r o p _ d a ta _ c o l ln < - a t (p p)
d < - d e f a u l t S D F T M O N
r o w t = p r o p _ ro u te _ c o l ln < - a t (p p)
r o w t < - u p d a t e (m) \C L M O N 1 , C L M O N 2 , C L M O N 3

2) u p d a te 3 (m : m ix tu re) \T H E R M O o r T X P O R T
ld e a l_ g a s = p p s y s < - a t ('i d e a l _ g a s ')
I d e a L g a s < - u p d a t e M G M O N
s e l f < - u p d a t e \C A L M O N

prop_route

property : prop_kwd
inputs[] : prop_route

mdl_name : text
mdl : ako : PP_model

1) m o d e l s o u r c e (p : p h y s lc a l_ p ro p e r ty _ s y s te m)
m d l = p < - a t (m d l_ n a m e)

2) u p d a t e d \C L M O N 1 , C L M O N 2 , C L M O N 3
m d l < - u p d a te

N o te : T h e F ig u re s A .1 to A .4 su m m arize C h a p te r 4.

Figure A.2 Parts of REO-TGS for Option Set

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

124

aspen

global \GLOBAL
ncomp \NCOMP
rglob \RGLOB
ppglob \PPGLOB

array_collectlon

dat[]

Abstracting structure of TC,
PC, e tc ., COMMON blocks

index

data

scalar

vector
key

key

binary _PP_model_parameter_collection

indexed collection

component_collectlon
unary_lndexed_collectlon

binary _lndexed_collectlon

array_collectlon

unary_indexed_array_collectlon

unary_PP_model_parameter_collection

Abstracting relationships between
TC, PC, etc. , COMMON blocks

universal_constants_collectlon

comp \C O M P
mw \M W
tc \T C
PC \P C
zc \Z C
VC \V C
tb \TB
vb \V B
omega \OMEGA
mup \M U P
vlcvtl W LCVT1
formula \FRMULA
LJparam \LJPAR
STKparam \STKPAR

|component_collectlon)
components 9

('tunary_PP_imodel_parameter_collectlon)
tc

/(unary_PP m odeljjaram ete^collectlonM
- PC

^unary_PP_imodel_parameter collection)
mw

an)^

Similarly for VC. TB, VB. OMEGA,
STKPAR, and other COMMON blocks.

N o te : T h e F ig u re s A.1 to A .4 su m m arize C h a p te r 4.

Figure A3 Parts of REO-TGS for the COMMON Blocks

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

125

PP model

simltr : aspen
unlv_const : unlversal_constants_collectlon
mlxt : mixture
prop : prop_data

1) s i m u l a t o r s : a s p e n)
tt s c o n t a i n s o b je c t fo r G L O B A L , P P G L O B , e t c .

2) u c d b (u : u n iv e r s a l_ c o n s ta n t s)
tt u c o n s i s t s o f o b j e c t s fo r T C , P C , e t c .

3) p a r a m e t e r o f (C lls t) f ro m (p p rd r)
tt r e t r i e v e d a t a fo r c o m p o n e n t s in C lls t f ro m p p rd r

4) a s s ig n C O M M O N !)
tt link s u i t a b l e r e p r e s e n t a t i o n s o f d a t a t o

s y m b o ls fo r C O M M O N b lo c k s

5) m ix tu re (m)
tt m c o n s i s t s o f d a t a fo r m o d u le p a r a m e t e r s

6) u p d a te ()
tt p r o p e r t i e s o n ly , n o t e m p e r a t u r e d e r iv a t iv e s

7) u p d a te 2 () N M O D M O N
tt n u m e r ic a l c a lc u la t io n o f h ig h e r - o r d e r

t e m p e r a t u r e d e r iv a t iv e s a n d p r e s s u r e
in te g r a l s o f p h y s ic a l p r o p e r t i e s

C o n s t r a in t s
1) 4 ,5 b e f o re 6
2) 1 ,2 b e f o re 4
3) 2 b e f o re 3

cavett_vapor_pressure \PL002

coeff : unary_PP_model_parameter_collectlon
pvap : mlxture_property

Similarly, other AP model
and AP method subclasses.

3) p a r a m e t e r o f (C l is t) f ro m (p p rd r)
// c o e f f d a t a f ro m p p rd r

4) a s s ig n C O M M O N !)
fo r P L C A V T

5) u p d a t e d \P L 0 0 2
m o d if ie s I n h e r i te d

C o n s t r a in t s

N o te : T h e F ig u re s A .l to A .4 su m m arize C h a p te r 4

Figure A.4 Parts of REO-TGS for the PP Model Routines

Reproduced w ith permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

126

prop_data

mixture

option_set

physlcal_property_system

unary_lndexed_collectlon

mlxture_propertles

mixture
{one or more phases,
given by T, P, X}

uc database

PP_model_names,
PP model colln

aspen

Indexed collection

universal constants collection

physical_property_system

N o te : T h is is th e h ighest level o f R E O -T G S M odel.

Figure A.S Inter-class Relationship Diagram for PP Tables

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

127

aspen

{details Irrelevant In Icape-91}

mw, tc, pc, vc, zc,
tb, vb, omega, mup.
vlcvtl, formula

IJ, stk

component_collectlon

universal constant collection

blnary_PP_model_parameter_collectlon

universal constants collection

{ I) for Lenard-Jones, and stk for Stockmeyer parameters)

prop_route_colln
Indexed collectionoption_set

prop_route
ako: PP_model

prop

r '

Figure A.6 Inter-class Relationship Diagram from the COMMON blocks

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

128

aspen
simulator

universal constants

mixture

prop_data

ppdatabase

my_mixture

prop_computed

PP model

| AP_model |

equn_of_state

molar volume model

fugaclty_coeff_model

enthalpy_departure_model

activlty_coeff_model

speciflc_heat_model

vaporjjressure_model

viscosity_model

dlffuslvityjnodel

surface tension model

mlxing_model

| APjnethod |

from VLE

I
...satdVLE

. Ideal_gas_departure

,activity_coeff

,fugaclty_coeff

. ..maxwell

.mixing

,vapor_phase

.. .VdPJntegral

Figure A.7 Inter-class Relationship Diagram from the PP Model Routines

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

129

Cp_IG

coeff

equn_of_state

cavett volume

ideal_gas

chao seader

raokett

molar vol model

redlich_kwong

fugaclty_coeff_model

grayson_streed

rackett_cheu _prausnltz

chao_seader_prausnltz_shalr

universal constant collection

unary _PP_model_parameter_collection

unary_PP_model_parameter_collectlon

blnary_PP_model_parameter_collectlon

unary_PP_model_parameter_collectlon

unary_PP_mode!_parameter_collection

unary _PP_model_parameter_collectlon

unary_PP_model_parameter_collectlon

Figure A.8 Inter-class Relationship Diagram from Some of the AP Model Routines

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

130

coeff

polynomial

coeff

d, vl_@_25_degC

polynomial

watson

wilson

renon

uniquac

activlty_coeff_model

Cp_polynomial

enthalpy_departure_model

speclfic_heat_model

extended scatchard hlldebrandunary_PP_model_parameter_collectlon

unary_PP_model_parameter_collection

unary_PP_model_parameter_collect!on

blnary_PP_model_parameter_collectlon

blnary_PP_model_parameter_collection

binary_PP_model_parameter_collection

unary_PP_modeljparameter_collection

binary_PP_model_parameter_collection

Figure A.9 Inter-class Relationship Diagram from Some of the AP Model Routines

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

131

coeff

coeff

coeff

comp_vls

LP_viscosity

coeff

coeff

chi

jasper

ako : PP model

ako : PP_model

ako : PP model

brokaw

extended_antolne

dean stiel

letsou stiel

relchenberg

andrade

chapman_enskog

hakim_steinberg_stiel

viscosity_model

vapor_pressure_model

surface_tenslon model

solid antoine

cavett_vapor_pressure
unary_PP_model_parameter_collectlon

unary _PP_model_parameter_collection

unary_PP_model_parameter_collectlon

unary_PP_model_parameter_collectlon

unary_PP_model_parameter_collection

unary_PP_model_parameter_collection

Figure A.10 Inter-class Relationship Diagram from Some of the AP Model Routines

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

132

DvJJO

LP_D_v_ijO,
vapor_volume

LP_viscoslty

mu I 10

coeff

D_v_ijO

mu_v_IO, Cv v iO

LP_k_v, vapor_volume

LP_k_v_iO, mu_v_iO
ako : PP model

ako : PP model

ako : PP model

ako : PP model

ako : PP model

ako : PP model

ako : PP model

ako : PP model

blanc

ako : PP model

sato riedel

andrade

wilke_chang

dlffuslvlty_model

dawson_khoury_kobayashl

stiel thodos excess

wassllJewa_mason_saxena

stlel thodos

chapman_enskog_wllke_lee

thermal_conductlvlty_model

wllke_chang_perkins_geankoplls

vredeveld

unary_PP_model_parameter_collectlon

Figure A .ll Inter-class Relationship Diagram from Some of the AP Model Routines

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

133

key,
data

key

key
scalar

vector

indexed collection array_collection

component_collectlon

unary_lndexed_collectlon

blnary_lndexed_co!lectlon

unary_lndexed_array_collectlon

unary_PP_model_parameter_collectlon

blnary_PP_model_parameter_collection

Figure A.12 Inter-class Relationship Diagram of Utility Objects from
the COMMON Blocks

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

Appendix B. VSM Design of Icape-91

134

A design of Icape-91 in VSM consists of GDS’s and vsm modules, as dis

cussed in Section 4.5 and presented in the following pages. A GDS design

describes the essential elements of its structure, elements and superclasses, and

behavior, operations and constraints on operations that are “visible” to the user.

Figure B .l presents a template for design. The structural elements are specified

along with their types. The operations or methods of a GDS are specified as a

method signature consisting of a method name, argument types, and the order of

arguments (argument names are only for internal use). Each method has a unique

integer identifier (these are needed to show inter-relationships and different spe

cializations of methods) in the family, class and all its subclasses. By default a sub

class GDS inherits all methods from its superclass. However, it may either supple

ment (indicated by the sign “ + ”), modify (indicated by the sign “*”), or drop

(indicated by the sign “x”) the inherited method. For some methods, an informal

description rather than detailed design is given. The constraints on methods are

specified in terms of before and after relationships between methods or a collection

of methods.

A vsm module design has three parts (recall discussions in Section 4.5): a

foreign tool in as-is condition, an implementation of an interface module for

VSM, and a definition of the interface module for the linker-loader in VSM. Fig

ure B.15 presents a template for design. O f course, the implementation of an

interface module is not an important element of the design; nonetheless, it is

shown for completion but most of the details are omitted. In some cases, design

description would have required more than afforded by one page; in these cases,

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

135

only portions of the design descriptions are shown. More details can be found at

the Center for Computer Aided Process Engineering.

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

136

IS name of superclass (list, if multiple inheritance)

attributes type

No. & type) method signature (method name, argument types and order)
where, type is one of the following:

“ +" if subclass is responsible for modification or addition to the method
“ x" if subclass drops inherited method
“ * ” if subclass modifies inherited method
else new method

Constraints

no.) b e fo r e or a f te r relationship between methods or a set of methods

(classname)
OBJECTNAM

Figure B.l Template for design of GDS on the following pages.

Reproduced w ith permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

137

| mixture_properties

IS

mixt ako : chemical_mixture
ppsys physical_property_system
ppmdl_set physical_property_equation_set
pressures array

temperatures array
compositions array

01) set null (ivarname : string)
02) set (ivarname : string) point (val :)
03) set (ivarname : string) list (val : array)
04) set (ivarname : string) range (initial :) (increment :) (final :)
05) component names (: array of string)
06) model (: physical_property_equation_set)
0 7) calculate properties (: array of string)
08) PP system (: physical_property_system)
09) update ()

pass to ppmdl_set: properties required and PP system to be used
pass to mixt: temperature, pressure, composition
pass to ppmdl_set: mixt

save results

10) save to (dbms :) (database :)

Constraints

1) (1 .. 8} before 9

2) 9 before 10

Figure B.2 Design of the GDS mixture_properties

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

138

.....................

| physical_property_system

IS

simltr aspen # or, other process simulator
ppmdl_colln indexed_collection

ppdb_reader pp_model_parameter_reader

ucdb universal constants collection

01) PP model data reader (: pp_model_parameter_reader)

to retrieve data for ucdb and objects in ppmdl_colln

02) add components (: array of string)

update universal_constants_collection and objects in
ppmdl_colln, for the given components

03) mixture of components (cs: array of string)

create an object for cs and that is compatible with
PP model objects in ppmdl_colln

04) get model named (: string)

for the given GDS name retrieve its definition, instantiate it,
and save it in ppmdl_colln

to this new object add universal_constants_collection,

pp_model_parameter_reader, components, simulator

the new object should be able to execute its update method

Constraints

1) 1, 2 before 3

Figure B.3 Design of the GDS physical_property_system

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

139

| universal_constants_collection

IS

cmpnts component_collection

tc, pc, vc, zc, universal_constant_collection
mw, tb, vb, omega,
mup, cavett_vol
formula indexed_collection
LJparam, STKparam binary_PP_model_parameter_collection

01) add components named (: array of string)
02) PP model data reader (: pp_model_parameter_reader)

03) assign (parametername : string) to (dynamicSymbolName : string)

assign new values to the dynamic symbols in

the user’s overlay file

Constraints

Figure B.4 Design of the GDS universal_constants_collection

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

140

_y
| physical_property_equation_set

..........mmmmmmmmmmm
IS

pp_nam es arrayed_collection

pp_eqns indexed_collection

01) at (pp_name string) use (ppe : physical_property_equation)
02) at (pp_name : string) " array of physical_property_equation
03) at (pp_name : string) of (ppe l) use (ppe2)

used to build a directed acyclic graph of

nodes representing physical_property_equation objects and
connections representing a physical property

04) at (pp_name : string) of (ppe : physical_property_equation)

use (ppmdl : ako physical_property_mode!)
05) PP models from (: physical_property_system)

06) calculate (dvarname : array of strings)

07) of mixture (: ako chemical_mixture)

Constraints
1) 4 or 5
2) 6 before 7

Figure B.5 Design of the GDS physical_property_equation_set

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

141

| physical_property_equation
hrnmmrn ~ w i l t !

IS

prop_calculated PP_name

ppmdl ako : physical_property_model

input_ppe array of physical_property_equation

01) to calculate (: PP_name | string)

02) model (: ako physical_property_model)
03) model name (: string) # GDS/class name
04) at input (: PP_name | string) use (: physical_property_equation)
05) calculate (: array of ddTcode)

propagate to input_ppe objects

link up ppmdl with those of input_ppe objects

request calculation from ppmdl

Constraints

1) 1 before all of {2, 3, 4, 5}

Figure B.6 Design of the GDS physical_property_equation

Reproduced w ith permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

142

*

| physical_property_model

IS

simltr aspen
ppdb universal_constants_collection
mixt aspen_mixture
data prop_data

01) simulator (: aspen)

02) universal constants data (: universal_constants_collection)
03) parameters of (: array of components)

from (: pp_model_param_reader)
04) at (submodelnm : string)

use (: ako physical_property_model)
05+) assign dynamic

objects to COMMON blocks
06) mixture (: aspen_mixture)
07+) update (: prop) (: phase) (: mixd) (: array of ddTcode)
08) get (: prop) (: phase) (: mixd) (: array of ddTcode)

Constraints

1) 1 , 2 before 4
2) 2 before 3

3) 5, 6 before 7

Figure B.7 Design of the GDS physical_property_model

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

143

| equation_of_state
•" V' \ ' \ ' " s' S ■*

IS physical_property_model

hmix
gmix
smix
phi
h

9
s

08*) get (: prop) (: phase) (: mixd) (: array of ddTcode)

09) set phase (:)

Constraints
4) 9 before 7

prop_data

prop_data
prop_data
prop_data

prop_data
prop_data

prop data

Figure B.8 Design of the GDS equation_of_state

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

144

i ideal_gas y^;,;,.^^^;^,v;v;y?^j^y^>^;^^v^^;svy;;,^^,^

IS equation_of_state_m odel

Dh_formation

Dg_formation

CpJG

unary_PP_model_parameter_collection

unary_PP_model_parameter_collection

unary_PP_model_parameter_collection

02+) universal constants data (: universal_constants_collection)
03+) parameters of (: list of components)

from (: pp_model_parameter_reader)
05) assign dynamic

Dh_formation, Dg_formation, CpJG to COMMON blocks

07*) update (: prop) (: phase) (: mixd) (: array of ddTcode)

call IDLGAS module (see Figure B.26)

Constraints

Figure B.9 Design of the GDS ideal_gas

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

145

1 redlichkwong

IS equation_of_state_model

a unary_PP_model_parameter_collection
b unary_PP_model_parameter_collection

02+) universal constants data (: universal_constants_collection)
03+) parameters of (: list of components)

from (: pp_model_parameter_reader)
06*) assigndynamic

a, b, e tc., to COMMON blocks
call RKJNIT module (see Figure B.27)

07*) update (: prop) (: phase) (: mixd) (: array of ddTcode)

call RK module (see Figure B.27)

Constraints

Figure B.10 Design of the GDS redlich_kwong

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

146

| molar_volume_model
..........

IS physical_property_model

Constraints

Figure B.ll Design of the GDS molar_volume

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

147

| cavett I f f

IS molar_volume_model

coeff unary_PP_model_parameter_collection

02+) universal constants data (: universal_constants_collection)
03+) parameters of (: list of components)

from (: ppjnodel_parameter_reader)

05) assign dynamic

coeff to COMMON blocks
07*) update (: prop) (: phase) (: mixd) (: array of ddTcode)

call CAVETT module (see Figure B.19)

Constraints

Figure B.l2 Design of the GDS cavett

Reproduced with permission of the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

148

¥; a ■ a y.'.v.v.v.v.̂ v.v̂v.v.v.v.-. vHeSwjX| rackett

IS molar_volume_model

v l j j binary_PP_model_parameter_collection

k j binary_PP_model_parameter_collection

02+) universal constants data (: universal_constants_collection)
03+) parameters of (: list of components)

from (: pp_model_parameter_reader)
05) assign dynamic

coeff to COMMON blocks
07*) update (: prop) (: phase) (: mixd) (: array of ddTcode)

call RACKETT module (see Figure B.20)

Constraints

Figure B.13 Design of the GDS rackett

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

149

| unary_PP_model_parameter_collection

IS

scalar unary_indexed_collection

vector unary_indexed_array_collection

01) indexed by (: component_collection)

02) at (component name : string) put (value :)

Constraints

01) 1 before 2

(unary PP model_parameter _collectlon)
____________ TC____________

(component_colleotlon)

scalar —
vector *i

(unary_!ndexed_collectlon)

(unary _indexed_array_collection)

key
data

(unary_indexed_collection)

Note: Similar design for the GDS binary_PP_model_parameter,
but with different methods of access and update (binary
indexed) of symmetric parameters.

Figure B.14 Design of GDS for PP model unary parameters

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

150

C . . .
S U B R O U T IN E F 0 0 2 (. . .) c . . .
C O M M O N / A / . . .
C O M M O N IBI . . .
C O M M O N ICI. . .

EN D

foo2.f

symbols denoting
COMMON blocks

symbols denoting ■
called subprograms

a
------- ► j r

c

r _d_
_e~-----».
f

JB

foo2.o

fo re ig n ro u tin e
vX'^viv.vVvx-.v.v.v

external Int dyn a[], dyn b[]:
external float dyn_c[];

foo()

pop_...(); /* obtain the necessary data communicated from vsm */
foo_ (X.Y....); /* X, Y, etc., macros for expressions evaluating data addresses */
return 1;

}

foo.c

in te r fa c e ro u tin e

too
too vsm foo

%dyn_a
%dynjD
%dyn~c

@a_ dyn_a
@b~ dyn~b
@c_ dyn_c

foo2

name of the object file containing
— Interface procedure (see above)
definition of the C-functlon XANT, an
interface procedure, as a vsm module XANT

declaration of dynamic symbols (prefix
“%” distinguishes dynamic symbol)

substitution of symbols for COMMON blocks by
dynamic symbols (prefix Indicates
substitution)

name of the object file containing
procedures to be directly reused

names of object files containing
other called procedures/functions

*/usr/llb/llbl77 p
*/usr/llb/llbF77
*/usr/llb/llbc

names of library files (prefix “*’ Indicates
library file name)

foo. cat

m o d u le d e f in itio n

Figure B.15 Template for design of vsm modules on the following pages

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

151

c . . .
S U B R O U T IN E P L 0 0 1 (. . .)

C . . .
C O M M O N /G L O B A L /.. .
C O M M O N /P L X A N T / . . .
C O M M O N / N C O M P / . . .

E N D

global
ncomp
plxant"

error
J e r rp f

Jog
~pow

p l0 0 U pl001.O

fo re ig n ro u tin e

external Int global [], ncomp[];
external double coeff []:

XANT()

pop ... ();
plOOl (T. NCP, ID, NDS, KCODE, KDIAG, VP, DVP);
return 1;

XANT.C
in te r fa c e ro u tin e

XANT
XANT XANT

%XANT_global
%XANT ncomp
%XANT~coeff

@global_ XANT_global
@noomp_ XANT_ncomp
@plxant_ XANT_coeff

pl001

error
lerrpt

*/usr/llb/libl77_p
*/usr/llb/llbF77
*/usr/llb/llbc

XANT.cat

m o d u le d e f in itio n

Figure B.l 6 Vsm Module for the Program Unit PL001

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

152

S U B R O U T IN E P L 0 0 2 (. . .)
C . . .

C O M M O N /G L O B A L /. . .
C O M M O N /P L C A V T / . . .
C O M M O N / N C O M P / . . .
C O M M O N / T O / . . .
C O M M O N / P C / . . .

E N D

pl002.f

global
ncomp

olcavt

error

pl002.o

fo re ig n ro u tin e

external int global [], ncomp [];
external double coeff [], tc [J. pc[);

CAVT_VP()

pop ...();
pl0d5_ (T, NCP, ID, NDS, KCODE, KDIAG, VP, DVP);
return 1;

}

CAVT VP.c
■AV.V.VlvXv.SLV.Vlv:' .v.v .w .viv.W v-

in te r fa c e ro u tin e

CAVT VP
CAVT VP CAVT VP

%CAVTVP global
%CAVTVP~ncomp
%CAVTVP coeff
%CAVTVP"tc
%CAVTVPj jc

@global_ CAVTVP_global
@ncomp CAVTVP ncomp
@plxant_~ CAVTVP"coeff
@tc_ CAVTVP tc
@pc_ CAVTVP_pc

pl002

error
lerrpt

*/usr/llb/llbl77_p
*/usr/llb/llbF77
*/usr/llb/llbc

CAVT VP. cat

m o d u le d e f in itio n

Figure B.17 Vsm Module for the Program Unit PL002

Reproduced with permission of the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

153

c . . .
SUBROUTINE PS001 (. . .)

COMMON /GLOBAL/...
COMMON /PSANT/...
COMMON /NCOMP/...

END

ps001 .f

fo re ig n ro u tin e

external Int global [], ncomp [];
external double coeff [];

SANT()

P °P ,....():
ps0ff1_ (T, NCP, ID, NDS. KCODE, KDIAG, VP, DVP);
return 1;

global
_ncomp.
psant_

error
jerrpt_

Jog
pow

psOOt.0

SANT.c ,
in te r fa c e ro u tin e

SANT
SANT SANT

%SANT_global
%SANT_ncomp
%SANT~coeff

@global_ SANT_global
@ncomp_ SANT~ncomp
@plxant_ SANT_coeff

ps001

error
lerrpt

*/usr/llb/llbl77_p
*/usr/llb/llbF77
*/usr/llb/llbc

SANT.cat

m o d u le d e f in itio n

Figure B.l 8 Vsm Module for the Program Unit PS001

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

154

C ...
SUBROUTINE VI001 (. . .)

C 1. •
COMMON /GLOBAL/...
COMMON /PLCAVT/...
COMMON /NCOMP/...
COMMON /TC /...
COMMON /PC /...

E N D

vIOOl .f

fo re ig n ro u tin e

global
"ncomp.
"tc
> 1
plcavt

error
Jerrpt_

Jog
_pow

vIOOI.o

external Int global [], ncomp [];
external double coeff[], tc [], p c [];

CAVT()

pop,... ():
vIOOT (T. NCP. ID, NDS, KCODE, KDIAG, VP, DVP);
return 1;

CAVT.c
in te r fa c e ro u tin e

.v.v.v.v/.v.v.v.v.v.v.v.v.'.v.v.'.v.v v.v.v. •.v .v .w .

CAVT
CAVT CAVT

%CAVT_global
%CAVT ncomp
%CAVT"coeff
%CAVT”tc
% C A V T j)c

@global_ CAVT_global
@ncomp_ CAVT_ncomp
@plxant_ CAVT~coeff
@tc_ CAVT_tc
@pc_ CAVTjdc

vIOOl

error
lerrpt

*/usr/llb/llbl77_p
*/usr/llb/llbF77
‘ /usr/llb/llbc

CAVT.cat

m o d u le d e f in itio n

Figure B.l 9 Vsm Module for the Program Unit VL001

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

155

C ...
SUBROUTINE VL004 (...) C • ■ •
COMMON /PPGLOB/...
COMMON /GLOBAL/...
COMMON /NCOMP/...
COMMON /TC/...
COMMON /PC /...
COMMON /RKTZRA/...

END

vl004.f

ppglob
global
~ncomp_
tc
pc
rktzra

error
Jerrpt_

Jog
_pow

;v .-a v ;-;*;v .*.v .v .v .v ;-a v ;v a v .v ;v ;v ;v ;-;';';v ;\v .v .-:v .'

vl004.o

fo re ig n ro u tin e

external Int global[], ncomp[];
external double coeff [];

RKT()

pop _ . . . ();
vlOOT_ (T, NCP, ID, KV, KDIAG, NDS, V, DV, KER);
return 1;

RKT.C
In te r fa c e ro u tin e

RKT
RKT RKT

%RKT_global
%RKT_ncomp
%RKT_coeff

@global_ RKT_global
@ncomp_ RKT~ncomp
@plxantj" RKT~coeff

VI004

error
lerrpt

*/usr/llb/llbl77_p
*/usr/llb/llbF77
*/usr/llb/llbc

RKT. cat

;v.v;,Kv.va%%v.v.v.';,;v,v.,.v.w ;*.v.v.v.v
m o d u le d e fin itio n

Figure B.20 Vsm Module for the Program Unit VL004

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

156

^ S U B R O U T IN E D V 001 (. . .)

' C O M M O N /G L O B A L /. . .
C O M M O N / R G L O B / . . .
C O M M O N / N C O M P / . . .
C O M M O N / M W / . . .
C O M M O N / T B / . . .
C O M M O N / V B / . . .
C O M M O N / M U P / . . .
C O M M O N / L J P A R / . . .
C O M M O N / S T K P A R / . . .

E N D

dv001 .f

global

_ncomp

stkpar

error
lerrpt

d v 0 0 1 .0

external int global[J, . . .
external double rglob[]. m w[], . . .

EN S K O G))

pop . . . ();
dv05i_ (T, P, NCP. ID, NDS, KDIAG, DIJ, KER);
return 1;

>

ENSKOG.c
in te r fa c e ro u tin e

ENSKOG
ENSKOG ENSKOG

%ENSKOG global
%ENSKOG~rlgob
%ENSKOG noomp
%ENSKOG- mw
%ENSKOG_tb

@global_ ENSKOG global
@rglob_ ENSKOG j-glob
@ncomp_ ENSKOG ncomp
@mw_ ENSKOG~mw
@tb_ ENSKOG tb
@vb_ ENSKOG~vb

dv001

error
lerrpt

*/usr/llb/llbl77_p
*/usr/llb/llbF77
*/usr/llb/llbc

ENSKOG.cat

m o d u le d e fin itio n

Figure B.21 Vsm Module for the Program Unit DV001

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

157

c . . . _globa1_
"mw_S U B R O U T IN E D V 001 (. . .)

C . •.
C O M M O N /G L O B A L /.. . J / C _
C O M M O N / M W / . . .
C O M M O N / V C / . . .

error
E N D Jerrpt"

Jog
_ P O W

dv002.f dv002.o

fo re ig n ro u tin e

external int global [];
external double m w j], vc[];

DAWSON()

P°P •••():
dvO(T2_ (X, NCP, ID, RHO, DIJLP, KDIAG, DIJ, KER);
return 1;

DAWSON.c
in te r fa c e ro u tin e

DAWSON
DAWSON DAWSON

%DAWSON global
% DAW SONjnw
% DAWSON tb

@global_ DAWSON_global
@mw_ DAWSON_mw
@vc_ DAWSON_vc

dv002

error
lerrpt

*/usr/llb/llbl77_p
*/usr/llb/llbF77
*/usr/llb/libo

DAWSON, cat

m o d u le d e f in itio n

Figure B.22 Vsm Module for the Program Unit DV002

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

158

n S U B R O U T IN E D V 101 (. . .)

' c o m m o n /G L O B A L /. . .
C O M M O N / N C O M P / . . .
C O M M O N /IP W O R K / . . .
C O M M O N /D V B L N C / . . .

E N D

dv101.f

global
ncomp
Jpwork”
dvblnc

error
jerrpt”

Jog
_pow

dv101.o

fore/g/7 ro u tin e

external Int global[], . . .
external double coeff[], work[], . . .

BLANC()

P °p _ ...():
dvlffi (T, P, NCP. ID, NDS, DIJ, KER);
return 1;

}

BLANC.c
in te r fa c e ro u tin e

BLANC
BLANC BLANC

%BLANC_global
%BLANC ncomp
%BLANC Ipwork
%BLANC_coeff

@global_
@ncomp_
@lpwork_
@dvblnc_

BLANC_global
BLANC ncomp
BLANC'lpwork
BLANC~coeff

dv101

error
lerrpt

‘ /usr/llb/llbl77_p
*/usr/llb/llbF77
*/usr/llb/llbc

BLANC.cat

m o d u le d e f in itio n

Figure B.23 Vsm Module for the Program Unit DV101

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

159

c . . .
S U B R O U T IN E DL001 (. . .)

C . . .
C O M M O N /G L O B A L /.. .
C O M M O N / M W / . . .
C O M M O N /F R M U L A /.. .
C O M M O N /V B / . . .

E N D

global
mw
~frmula_
vb

error
lerrpt

Jog
_POW

dIOOl .f dl001 .o

fo re ig n ro u tin e

external int global[]. ...
external double coeff[], work[], . . .

WILKECH()

pop,... ();
dIOOl (T, X. NCP, ID, MUL, KDIAG, DU. KER);
return 1;

WILKECH.c
in te r fa c e ro u tin e

WILKECH
WILKECH WILKECH

% WILKECH global
%WILKECH~mw
%WILKECH- formula
%WILKECH- vb

@global_ WILKECH global
@mw_ W ILKECHjnw
@frmula WILKECH formula
@vb_ “ WILKECH~vb

dIOOl

error
lerrpt

*/usr/llb/llbl77_p
*/usr/llb/llbF77
*/usr/llb/llbc

WILKECH.cat

m o d u le d e f in itio n

Figure B.24 Vsm Module for the Program Unit DL001

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

160

C . . .
S U B R O U T IN E D L 101 (. . .)c . . .
C O M M O N /G L O B A L /. . .
C O M M O N / M W / . . .
C O M M O N /F R M U L A /.. .
C O M M O N / V B / . . .
C O M M O N /N C O M P / . . .
C O M M O N / P P W O R K / . . .
C O M M O N /I P W O R K / . . .
C O M M O N /D L W C / . . .

E N D dl101.o

global
~mw_
frmula
~vb_
ncomp
jjpwork”
lpwork
~dlwc_ ~

error
Jerrpt_

Jog
J)O W

fo re ig n ro u tin e

external int global[], •••
external double c oe ff[], work[], . . .

WILKECHMIX()

pop . . . ();
dl10T (T, X, NCP, ID, NDS, IWORK, IJWORK, KDIAG, Dl, KER);
return 1;

WILKECHMIX.c
in te r fa c e ro u tin e

WILKECHMIX
WILKECHMIX WILKECHMIX

% WILKECHMIX global
%WILKECHMIX_mw
% WILKECHMIX formula
%WILKECHMIX~vb

©global WILKECHMIX global
@mw WILKECHMIX- mw
@frmula WILKECHMIX Jormula
@vb_ " WILKECHMIX_vb

dll 01

error
lerrpt

*/usr/llb/llbl77 p
*/usr/llb/llbF77
*/usr/llb/llbc

WILKECHMIX.cat

m o d u le d e f in itio n

Figure B.25 Vsm Module for the Program Unit DL101

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

161

c . . .
S U B R O U T IN E E S 0 0 (. . .)

C . . .
C O M M O N /G L O B A L /.. .
C O M M O N / N C O M P / . . .
C O M M O N /P P G L O B / . . .
C O M M O N /R G L O B /. . .
C O M M O N /P P W O R K / . . .

E N D

global
Incomp.
ppglob
rglob
_ppwork

error
lerrpt

Jog
_pow

esOO.f esOO.o

fo re ig n ro u tin e

externa! int global[], . . .
external double ppglob[], rglob[], . . .

IDLGAS()

pop . . . ();
esOCJ (T, P, X, NCP, ID, . . .);
return 1;

}

IDLGAS.c
in te r fa c e ro u tin e

^.•.v.v.v.'.Lv.v.v.v.v/.v.v.v.v.'.v

IDLGAS
IDLGAS IDLGAS

%IDLGAS_global
%IDLGAS ncomp
%IDLGASlrglobal
%IDLGASj)pglob
%IDLGASj3pwork

@global_
@ncomp_
@rglob_
@ppglob_
@ppwork_

IDLGAS_global
IDLGAS ncomp
IDLGASj-global
IDLGASlppglob
IDLGAS_ppwork

esOO

error
lerrpt

*/usr/llb/llbl77_p
*/usr/llb/llbF77
*/usr/llb/llbc

IDLGAS.cat

m o d u le d e f in itio n

Figure B.26 Vsm Module for the Program Unit ESOO

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

162

c . . . C . . .
S U B R O U T IN E E S 0 1 (. . .) S U B R O U T IN E E S 0 2 (. . .)

C . . . C . . .
C O M M O N /G L O B A L /.. . C O M M O N /N C O M P / . ..
C O M M O N / N C O M P / . . . C O M M O N /P P G L O B / . . .
C O M M O N /P P G L O B / . . . C O M M O N /R G L O B /. . .
C O M M O N /R G L O B / . . . C O M M O N / T C / . . .
C O M M O N / T C / . . . C O M M O N / P C / . . .
C O M M O N / P C / . . . C O M M O N /E S R K A / . . .
C O M M O N /E S R K A / . . . C O M M O N / E S R K B / . . .
C O M M O N / E S R K B / . . .

E N D
E N D

es01 .f es02 .f
e s0 1 .o
similarly, e s0 2 .o

global
ncomp
jjpg lob ”
rglob

tc
Ipcl
esrka
esrkb

error
J e rr p f

Jog
J 3 0 W

fo re ig n ro u tin e

external Int global[], . . .
external double ppglob [], rglob [],

RKINITf)

es02 (NDS);
return 1;

}
RK()

pop ...();
esOT_ (T. P. X, NCP, ID, .. .)
return 1;

}

RK.c

in te r fa c e ro u tin e

RK
RK RK
RKINIT RKINIT

%RK_global
%RK_ncomp
%RK~rglobal

@global_ RK_global
@ncomp_ RK_ncomp

@pc_ RK pc
@esrka_ RK a
@esrkb~ RK b

es01
es02

error
lerrpt

*/usr/llb/llbl77_p
*/usr/llb/llbF77
*/usr/llb/llbc

RK.cat

m o d u le d e fin itio n
.v.v.v.v.v.v.v.

Figure B.27 Vsm Modules for the Program Units ES01 and ES02

Reproduced with permission of the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

163

c ...

global_
ncomp_
sigstdj

S U B R O U T IN E S IQ 001 (. . .)
C

C O M M O N /G L O B A L /.. .
C O M M O N /S I G S T D / . . .
C O M M O N /N C O M P / . . .

error
jerrpt_

E N D Jog
J 5 0 W

Sig001 .f sig001 .o

fo re ig n ro u tin e

external Int global [], ncomp [];
external double coeff [];

p o p ,. .. ():
slgO01 (T, NCP, ID, NDS, KDIAG. SIG, KER);
return 1;

JASPER
JASPER JASPER

%JASPER_global
%JASPER~ncomp
%JASPER~coeff

@global_ JASPER_global
@ncomp_ JASPER_ncomp
@slgstd_ JASPER_coeff

slgOOl

error
lerrpt

*/usr/llb/llbl77_p
*/usr/llb/llbF77
*/usr/llb/llbc

JASPER.cat

Figure B.28 Vsm Module for the Program Unit SIG001

JASPERf)

JASPER, c
in te r fa c e ro u tin e

m o d u le d e f in itio n

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

164

global
ncomp

_omega

error
sig002.o lerrpt

powsig002.f

S U B R O U T IN E S IG 0 0 2 (. . .)

C O M M O N /G L O B A L /.. .
C O M M O N /N C O M P / . . .
C O M M O N /R G L O B / . . .
C O M M O N / T C / . . .
C O M M O N / P C / . . .
C O M M O N /O M E G A / . . .
C O M M O N / C H I / . . .

fo re ig n ro u tin e

external int global[] . . .
external double rglobal[]...

HAKIM ()

pop . . . ();
slgOU2_ (T, NCP, ID, NDS, KDIAG, SIG, KER);
return 1;

HAKIM.c
in te r fa c e ro u tin e

HAKIM
HAKIM HAKIM

%HAKIM_global
%HAKIM_ncomp

@global_ HAKIM_global
@ncomp_ HAKIM_ncomp

slg002

error
lerrpt

*/usr/llb/libl77_p
*/usr/llb/llbF77
*/usr/llb/llbc

HAKIM.cat

m o d u le d e f in itio n

Figure B.29 Vsm Module for the Program Unit SIG002

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

165

c . . .
S U B R O U T IN E SIG 201 (. . .)

C • • >
C O M M O N /G L O B A L /.. .

E N D

.global_

error_
.lerrpt”

.log
pow

sig201 .f sig201 .o

fo re ig n ro u tin e

external Int global [], ncomp [];
external double coeff [];

SIGMIXT))

);
slg2Ul (X, NCP, ID, EXPNT. SIG, KDIAG, SIGMX, KER);
return 1;

SIGMIXT.c
in te r fa c e ro u tin e

SIGMIXT
SIGMIXT SIGMIXT

%SIGMIXT_global

@global_ SIGMIXT_global

slg201

error
lerrpt

*/usr/llb/llbl77_p
*/usr/llb/llbF77
*/usr/llb/llbc

SIGMIXT.cat

m o d u le d e f in itio n

Figure B.30 Vsm Module for the Program Unit SIG201

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

166

C . . .
SUBROUTINE KV001 (...)

C ...
C O M M O N /G L O B A L /. . .
C O M M O N / P P G L O B / . . .
C O M M O N / M W / . . .

END

global
Ippglob_
mw

error
J e rrp f

Jog
_pow

kvOOI.f kv001.o

fo re ig n ro u tin e

external Int global [];
external double ppglob [] , . . .

STIEL()

pop . . . ():
kvO(Tl_ (NCP, ID, CPV, MUV, KDIAG, K, KER):
return 1;

}

STIEL.c
in te r fa c e ro u tin e

STIEL
STIEL STIEL

%STIEL_global
%STIEL_ppglob
%STIEL_mw

@global_ STIEL_global
@ppglob_ STIEL_ppglob
@mw_ STIEL~mw

kv001

error
lerrpt

*/usr/llb/libl77_p
*/usr/llb/llbF77
*/usr/llb/llbc

STIEL. cat

m o d u le d e fin itio n

Figure B.31 Vsm Module for the Program Unit KV001

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

167

c . . .
SU B R O U T IN E K V 003 (.

C . . .
C O M M O N /G L O B A L /.. .
C O M M O N /P P G L O B / . . .
C O M M O N / M W / . . .
C O M M O N / T C / . . .
C O M M O N / V C / . . .
C O M M O N / Z C / . . .

E N D

kv003.f

kv003.o

similarly, kv202.f

global
Ippgiob_
mw
> _
> _
~zc~

error
Jerrpt_

Jog
_pow

fo re ig n ro u tin e

external Int global [];
external double ppglob []....

STIELXSf)

pop ...();
kvO<53 (NCP, ID, VV, KDIAG, K, KER);
return 1;

STIELXSMIXTO

pop... ():
kv202 (X, NCP, ID, RHO, KLP, KDIAG, KMX, KER);
return 1;

STIEL. c

in te r f e c e ro u tin e

STIELXS
STIELXS STIELXS
STIELXSMIXT STIELXSMIXT

%STIELXS global
% STIELXS ppglob
%STIELXS~mw

@global_ STIELXS_global
@ppglob_ STIELXS_ppglob
@mw_ STIELXSjnw

kv003
kv202

error
lerrpt

*/usr/llb/libl77_p
*/usr/llb/llbF77
*/usr/llb/llbc

STIELXS. cat

m o d u le d e f in itio n

Figure BJ2 Vsm Modules for the Program Units KV003 and KV202

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

168

C . . .
S U B R O U T IN E KV 201 (. . .) O • . •
C O M M O N /G L O B A L /. . .
C O M M O N / M W / . . .

E N D

global
mw

error
Jerrpt_

Jog
J)O W

kv20U kv201.0

fo re ig n ro u tin e

external Int global[];
external double m wj];

WASSIL()

p° p . . . ();
kv2(Tl (X, NCP, ID, MUV, K, KDIAG, KMIXT, KER);
return 1;

}

WASSILJEWA.c
in te r fa c e ro u tin e

WASSILJEWA
WASSIL WASSIL

%WASSIL global
%WASSIL~mw

@global_ WASSIL_global
@mw_ WASSIL_mw

kv201

error
lerrpt

WASSIL.cat

*/usr/llb/llbl77_p
*/usr/llb/llbF77
*/usr/llb/llbo

m o d u le d e f in itio n

Figure BJ3 Vsm Module for the Program Unit KV201

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

169

S U B R O U T IN E KL001 (. . .)
C . . .

C O M M O N /G L O B A L /.. .
C O M M O N / N C O M P / . . .
C O M M O N / M W / . . .
C O M M O N / T C / . . .
C O M M O N /K L S T D / . . .

E N D k lO C M .o

kl001 .f

global
ncomp
jnw_
tc
klstd

error
J e rr p f

Jog
_pow

fo re ig n ro u tin e

external int global
external double coeff [J. . . .

KCORR() / * a correlation in reduced temperature * /

P°P_-•■();
kl001_ (T , NCP, ID, NDS, KDIAG, K, KER);
return 1;

KCORR.c
in te r fa c e ro u tin e

KCORR
KCORR KCORR

%KCORR_global
%KCORR_ncomp
%KCORR_mw
%KCORR_tc
%KCORR_coeff

@global_ KCORR_global
@ncomp_ KCORR_ncomp
<®mw KCORR~mw
@ tc_- KCORRJc
@klstd_ KCORR_coeff

klOOl

error
lerrpt

*/usr/llb/llbl77_p
*/usr/llb/llbF77
‘ /usr/llb/llbc

STIEL.cat

v.\v.%v>;v.v>,v;,.v;v.v.'. vXw .v;v.lW v.v,v.v-'v.v;%v.,.%,.,.v;,;v.v.v;v. v.v.v
m o d u le d e fin itio n

Figure BJ4 Vsm Module for the Program Unit KL001

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

170

^ S U B R O U T IN E K L 002

" C O M M O N /G L O B A L /. . .
C O M M O N / M W / . . .
C O M M O N / T C / . . .
C O M M O N / T B / . . .

EN D kl002.o

kl002.f

global
mw
"tc
jtbZ
error
lerrpt

Jog
_pow

v.v/KvivivWvW;
fo re ig n ro u tin e

external Int global[]
external double coeff []

SATORIEDL))

Boo2 ” (T, NCP, ID, NDS. KDIAG, K, KER);
return 1;

v.v.v.v.vxv.-iv.-.v.v,'

SATORIEDL.c
in te r fa c e ro u tin e

SATORIEDL
SATORIEDL SATORIEDL

%SATORIEDL global
%SATORIEDL~mw
%SATORIEDL_tc
%SATORIEDL_tb

@global_ SATORIEDL_global
@mw SATORIEDL_mw
@tc ~ SATORIEDLJc
@tb~ SATORIEDLJb

kl002

error
lerrpt

*/usr/llb/llbl77_p
*/usr/llb/llbF77
*/usr/llb/llbc

SATORIEDL.cat

m o d u le d e fin itio n

Figure BJ5 Vsm Module for the Program Unit KL002

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

171

c . . .
S U B R O U T IN E KL201 (. . .)

C O M M O N /G L O B A L /.. .
C O M M O N / M W / . . .

E N D

global
mw ~

error
Jerrpt_

Jog
.pow

kl201.f kl201 .o

external Int global[] , . . .
external double m w [], . . .

VREDEVELD))

pop,...();
kl20T (X, NCP, ID, K, KDIAG, KMX, KER);
return 1;

VREDEVELD.c

in te r fa c e ro u tin e
.v .\v .v^lv >w .lv .\v .lv .^ ^ v .v .v .v .v .v .v .lv .v .v .v ;v .v .v ;v ;v .v .v .v .v .v ;v:,;';,;,;v .'

VREDEVELD
VREDEVELD VREDEVELD

% VREDEVELD global
%VREDEVELD~mw

@global_ VREDEVELD_global
@mw_ VREDEVELD_mw

kl201

error
lerrpt

*/usr/llb/llbl77 p
*/usr/llb/llbF7f
‘ /usr/llb/llbc

VREDEVELD. cat

m o d u le d e f in it io n

Figure B.36 Vsm Module for the Program Unit KL201

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

172

S U B R O U T IN E M U V 001 (. . .) 0 . . .
C O M M O N /G L O B A L /.. .
C O M M O N / N C O M P / . . .
C O M M O N / M W / . . .
C O M M O N / T C / . . .

E N D muv001.0

muvOOl .f

_global
ncomp

error
lerrpt

external int global []
external double rglob []

C H A P M N ()

muvObl* (T, NCP. ID, NDS, KDIAG. MU. KER);
return f;

>

CHAPMN.c
in te r fa c e ro u tin e

CHAPMN
CHAPMN CHAPMN

%CHAPMN_global
%CHAPMN_ncomp
%CHAPMN mw
%CHAPMN- tc

@global_ CHAPMN_global
@ncomp_ CHAPMN_ncomp
@mw_ ~ CHAPMN- mw
@tc_ CHAPMNJc

muvOOl

error
lerrpt

*/usr/llb/libl77_p
*/usr/llb/llbF77
*/usr/llb/llbc

CHAPMN.cat

HV.ViV.V.V.ViV.V.V.VivW
m o d u le d e f in itio n

Figure B.37 Vsm Module for the Program Unit MUV001

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

173

n S U B R O U T IN E M U V 0 0 2 (. . .)

' c o m m o n / g l o b a l / . . .
c o m m o n n e t . . .
C O M M O N / P C / . . .
C O M M O N / M U P / , . .

E N D muv002.o

muv002.f

global
tc
_ P C _
mup

error
Jerrpt_

Jog
JJOW

fo re ig n ro u tin e

external Int global []
external double tc []

REICHEN()

pop . . . ();
muv0O2_ (T , P, NCP, ID, MULP, KDIAG, MU, KER);
return 1;

}

REICHEN.c
in te r fa c e ro u tin e

REICHEN
REICHEN REICHEN

%REICHEN global
% REICHEN tc
%REICHENJ5C
%REICHEN mup

@global_
@tc_
@pc_
@mup_

REICHEN global
REICHEN tc
REICHEN pc
REICHENmup

muv002

error
lerrpt

*/usr/lib/libl77_p
*/usr/lib/libF77
*/usr/llb/llbc

REICHEN.cat

m o d u le d e f in itio n

Figure B.38 Vsm Module for the Program Unit MUV002

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

174

(S U B R O U T IN E M U V 201 (. . .)

' C O M M O N /G L O B A L /. . .
C O M M O N / M W / . . .
C O M M O N / T B / . . .
C O M M O N /M U P / . . .

E N D

muv201.f

muv201.0

mup

error
lerrpt_

external Int global[]
external double tc []

BROKAW()

pop •••():
muv201 (T, X, NCP. ID, MU, NDS, KDIAG, MUMIXT, KER);
return f:

}

BROKAW.C
in te r fa c e ro u tin e

BROKAW
BROKAW BROKAW

%BROKAW_global
%BROKAW_mw
%BROKAW tb
%BROKAW mup

@global_
@mw_
@tb_
@mup_

muv201

BROKAW global
BROKAW_mw
BROKAWJb
BROKAWjnup

error
lerrpt

*/usr/llb/llbl77 p
*/Usr/llb/llbF77
‘ /usr/llb/llbc

BROKAW. cat

m o d u le d e f in itio n
aWvaW.v.v.v.

Figure B.39 Vsm Module for the Program Unit MUV201

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

175

_ S U B R O U T IN E M U V 202 (. . .)

' C O M M O N /G L O B A L /.. .
C O M M O N / M W / . . .
C O M M O N / T C / . . .
C O M M O N / Z C / . . .

E N D muv202.o

muv202.f

_global.
mw_
tc_
ZC

error
J e r r p f

Jog
_pow

fo re ig n ro u tin e

external int global[] __
external double tc [] , . . .

DEANSTIEL))

pop . . . ();
muvl02_ (T, X, NCP, ID, RHO, MU, KDIAG. MUMIXT, KER);
return 1;

DEANSTIEL.c
in te r fa c e ro u tin e

DEANSTIEL
DEANSTIEL DEANSTIEL

%DEANSTIEL_global
%DEANSTIEL mw
%DEANSTIELJc
%DEANSTIEL_zc

@global_ DEANSTIEL_global
@mw DEANSTIELjnw
@tc “ DEANSTIEL tc
@zc_ DEANSTIEL_zc

muv202

error
lerrpt

*/usr/llb/llbl77 p
*/usr/llb/llbF77
*/usr/lib/llbc

DEANSTIEL.cat

m o d u le d e f in itio n

Figure B.40 Vsm Module for the Program Unit MUV202

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

176

C . . .
SU B R O U T IN E M U L001 (. . .)

C . . .
C O M M O N /G L O B A L /.. .
C O M M O N /N C O M P / . . .
C O M M O N /M U L A N D /.. .

E N D
m ul001 .o

mulOOl .f

global_
ncomp_
muland

error
lerrpt

Jog
J 3 0 W

fo re ig n ro u tin e

external Int global[] , . . .
external double coeff []

ANDRA DE!)
<

pop,,.- • • () ;
mul(501 (T, NCP, ID, NDS, KDIAG, MU, KER);
return T;

}

ANDRADE, c

In te r fa ce ro u tin e

ANDRADE
ANDRADE ANDRADE

%ANDRADE_global
%ANDRADE ncomp
%ANDRADE~coeff

@global_ ANDRADE_global
@ncomp_ ANDRADE_ncomp
@muland_ ANDRADE_coeff

mulOOl

error
lerrpt

*/usr/llb/llbl77 p
*/usr/llb/libF77
*/usr/llb/llbc

ANDRADE.cat

m o d u le d e f in itio n

Figure B.41 Vsm Module for the Program Unit MUL001

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

177

S U B R O U T IN E M U L 002 (. . .)
C . . .

C O M M O N /G L O B A L /. . .
C O M M O N / M W / . . .
C O M M O N / T C / . . .
C O M M O N / P C / . . .
C O M M O N / O M E G A / . . .

E N D mul002.o

mul002.f

omega

error
lerrpt

fo re ig n ro u tin e

external Int global[) , . . .
external double m w []. . . .

LETSOU ()

pop . . . ():
mul502 (T, NCP, ID, KDIAG. MU, KER);
return T;

}

LETSOU.c

in te r fa c e ro u tin e

LETSOU
LETSOU LETSOU

%LETSOU global
%LETSOU_mw
%LETSOU_tc
%LETSOU_pc
%LETSOU_omega

@globa!_
@mw_
@tc_
@pc_
@onTega_

mul002

LETSOU global
LETSOU_mw
LETSOU j c
LETSOU_pc
LETSOU_omega

error
lerrpt

*/usr/llb/llbl77 p
*/usr/llb/llbF77
‘ /usr/lib/llbc

LETSOU.cat

m o d u le d e f in itio n

Figure B.42 Vsm Module for the Program Unit MUL002

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

References

178

Aho, A. V., Sethi, R., & Ullman, J. D. (1986). Compilers, principles, techniques,

and tools. Reading, MA: Addison-Wesley.

Encyclopedia Americana. (1989). (Vol. 13). Danbury, CT: Grolier.

Anderson, K. J., Beck R. R, & Buonanno, T. E. (1988). Reuse of software mod

ules. AT&T Technical Journal, 67 (1), 71-76.

Bachman, C. W. (1988). A CASE for reverse engineering. Datamation, 34 (13),

pp. 49-56.

Bachman, C. W. (1990). A personal chronicle: Creating better information

systems, with some guiding principles. IEEE Transactions on D ata and Knowl

edge Engineering, 1 (1). 17-32.

Benayoune, M., & Preece, P. E. (1987). Review of information management in

com puter-aided engineering. Computers and Chemical Engineering, 1_1 (1),

1- 6 .

Biggerstaff, T. J., & Perlis, A. J. (1984). Software reuse [Special Issue]. IEEE

Transactions on Software Engineering, SE-10, (5).

Biggerstaff, T. J. (1991). Design recovery for maintenance and reuse. Computer,

22 (7), 36-49.

Blaha, M. R. (1984). Application of data management technology to process

engineering. Unpublished doctoral dissertation, Washington University in St.

Louis.

Blaha, M. R., Yamashita Y. & Motard R. L. (1985). Database management

systems for the process engineer. Chemical Engineering Progress, 81 (9), pp.

45-49.

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

179

Booch, G. (1991). Object-oriented design. Redwood City, CA: Benjamin Cum

mings.

Bray, O. H. (1987). Data management for engineers: Current capabilities, future

directions. Computers in Mechanical Engineering, 5 (5), pp. 20-24.

Bushnell, M. L. (1988). Design automation: Automated full-custom VLSI layout

using the ULYSSES design environment. Boston: Academic Press.

Caldiera, G., & Basili, V. R. (1991). Identifying and qualifying reusable software

components. Computer, 24 (2), 61-70.

Cattell, R. G. G. (1991). Object data mangement: Object-oriented and extended

relational database systems. Reading, MA: Addison-Wesley.

Chikofsky, E. J., & Cross II, J. H. (1990). Reverse engineering and design recov

ery: A taxonomy. IEEE Software, 7 (1), pp. 13-17.

Cifeuntes L. (1987). Selecting process modeling software. Chemical Engineering,

94 (16), pp. 97-99.

Codd, E. F. (1970). A relational model for large shared data banks. Communica

tion of the ACM, 13 (6), 377-387.

Cox, B. J. (1986). Object-oriented programming: An evolutionary approach,

Reading, MA: Addison-Wesley.

Dahl, O., & Hoare, C. A. R. (1972). Hierarchical program structure. In O. Dahl,

E. Dijkstra, & C. A. R. Hoare, Structured programming (pp. 175-220). New

York: Academic Press.

D ate, C. J. (1986). An introduction to database systems. (4th ed.) Reading, MA:

Addison-Wesley.

Deltz, D. (1988). Tools for total quality. Computers in Mechanical Engineering,

7 (1), pp. 8-13.

Dittrich, K. R., & Dayal. U. (Eds.) (1986). Proceedings of the international

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

180

workshop on object-oriented database systems. Los Alamitos, CA: IEEE

Computer Society Press.

Durek, T., & van Horne F. (1988). Systems software development: Building

canonical libraries. Signal, 42 (8), pp. 89-93.

Eastman, C. M. (1981). Database facilities for engineering design. Proceedings

of the IEEE, 69 (10), 1249-1263.

Edmunds, R. A. (1985). The Prentice-Hall Standard Glossary of Computer

Terminology. Englewood Cliffs, NJ: Prentice Hall.

Engelke, W. D. (1987). How to integrate CAD/CAM systems. New York: Marcel

Dekker.

Fulton, R. E. (1987). A framework for innovation. Computers in Mechanical

Engineering, 5 (5), pp. 26-40.

Gadient, A. J. (1987). Engineering information systems: Implementation

approaches and issues. In Proceedings of the third international conference on

data engineering, (pp. 567-578). Los Alamitos, CA: IEEE Computer Society

Press.

Golay, M. E. (1990, April). Advanced light-water reactors. Scientific American,

262, pp. 82-89.

Goldberg, A., & Robson, D. (1983). SmallTalk-80: The language and its implem-

netation. Reading, MA: Addison-Wesley.

Graham, S. A. Jr., & Giambelluca, R. (1987). Information systems—tools for

project management. Chemical Engineering Progress, 83 (1), pp. 52-59.

Graham, L. E. (1982a). ASPEN User Manual (Vol. 2). Washington, DC: U.S.

Departm ent of Energy. (NTIS Publication No. DE82020196)

Graham, L. E. (1982b). ASPEN System Administrator Manual (Vol. 1). Washing

ton, DC: U.S. Departm ent of Energy. (NTIS Publication No. DE82020196)

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

181

Graham , L. E. (1982c). ASPEN System Administrator Manual (Vol. 2). Washing

ton, DC: U.S. Department of Energy. (NTIS Publication No. DE82020196)

Gundersen, T. (1991). Achievements and future challenges in industrial design

applications of process systems engineering. In Proceedings of the 4th inter

national sysposium on process systems engineering. New York: American

Institute o f Chemical Engineers.

G upta, A. P., Holland, M., Siewiorek, D. P., Anayadufresne, M., Prinz, F., Nigen,

J., & Amon, C. (1991). Life Cycle Concerns in Designing Computer Systems.

Presented at the AIChE summer national meeting, Pittsburgh.

Harrison, D. S., Newton, A. R., Spickelmier, R. L., & Barnes, T. J. (1990). Elec

tronic CAD frameworks. Proceedings of the IEEE, 78 (2), 393-417.

James, A. J. (1984). Specification and evaluation of computer aided engineering

(CAE) systems. [Personal communications].

Jones, T. (1984). Reusability in programming: A survey of the state of the art.

IE E E Transactions on Software Engineering, SE-10, 488-494.

Jones, A. K. (1978). The object model: A conceptual tool for structuring soft

ware. In R. Bayer, R. M. Graham, & G. Seegmuller (Eds.), Operting sys

tems—An advanced course, (pp. 7-16). Berlin: Springer Verlag.

Joseph, J. V., Thatte, S. M., Thompson, C. W., & Wells, D. L. (1991). O bject-

oriented databases: Design and implementation. Proceedings of the IE E E , 79

(1), 42-64.

Joyce, E. J. (1988). Reusable software: Passage to productivity. Datam ation, 34

(18), pp. 97-100.

Katz, R. H. (1985). Information management for engineering design. New York:

Springer-Verlag.

Kinnes, C. C., & Kappes, K. K. (1992). Protecting computer software—your legal

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

182

rights and responsibilities. Presented at the AIChE spring national meeting,

New Orleans.

Kuhn, T. (1970). The structure of scientific revolution. (2nd ed.) Chicago: Uni

versity of Chicago.

Love, T., (1988). The economics of reuse [of software]. In Proceedings of the

thirty-third IEEE Computer Society international conference. Los Alamitos,

CA: IEEE Computer Society Press.

Lyytinen, K., (1987). Different perspectives on information systems: problems and

solutions. ACM Computing Surveys, 19 (1), 5-252.

Mehta, J., & Patakas, D. (1988). Database systems: Current research. St. Louis:

Center for Computer Aided Process Engineering, Washington University in St.

Louis.

Meyers, B. (1987). Reusability: The case for object-oriented design. IEEE Soft

w are, 4 (2), pp. 50-64.

Meyers, B. (1988). Object-oriented software construction. Englewood Cliffs, NJ:

Prentice Hall.

M otard, R. L. (1987). [Personal communications].

Myers, G. J. (1978). Composite/Structured Design, New York: Van Nostrand

Reinhold.

Patakas, D. (1988). Data Modeling for Process Design. Unpublished doctoral

dissertation, Washington University in St. Louis.

Piela, P. C., Epperly, T. G., Westerberg, K. M., & Westerberg, A. W. (1991).

ASCEND: An object-oriented computer environment for modeling and anal

ysis: The modeling language. Computers and Chemical Engineering, 15, (1),

53-72.

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

183

Fountain, D. (1988). REKURSIVE: An object-oriented CPU. BYTE, 13 (12),

pp. 341-349.

Power, L. R. (1990). Post-facto integration technology: New discipline for an old

practice. In Proceedings of the first international conference on systems inte

gration, Los Alamitos, CA: IEEE Computer Society Press.

Preece, P. E., & Stephens, M. B. (1989). PROCEDE—opening windows for

design. In Computer Integrated Process Engineering, (pp 211-223). Rugby,

UK: Hemisphere

Pyster, A., & Barnes, B. (1988). The Software Productivity Consortium reuse pro

gram. In Proceedings of the thirty-third IEEE Computer Society international

conference. Los Alamitos, CA: IEEE Computer Society Press.

Rasdorf, W. J. (1987). Extending DBMS’s for engineering applications, Comput

ers in Mechanical Engineering, 5 (5), pp. 62-69.

Robertson, J. L. (1989). Ideal process simulator. Chemical Engineering Progress,

85 (10), pp. 62-66.

Rumbaugh, J., Blaha M., Premerlani, W., Eddy, F., & Lorenson, W. (1991).

Object-oriented modeling and design. Englewood Cliffs, NJ: Prentice Hall.

Saunders, J. H. (1989). A survey of object-oriented programming languages.

Journal of Object-Oriented Programming, 1 (6), 5-11.

Silberschatz, A., Stonebraker, M., & Ullman, J. (Eds.) (1991). The next-

generation database systems. [Special Issue]. Communications of the ACM,

34(10), 1110-1120.

Stefik, M. & Bobrow, D. (1986). Object-oriented programming: Themes and

variations. Artificial Intelligence Magazine, 7 (1), pp. 40-62.

Stephanopolous, G., Johnston, J., Kriticos, T., Lakshmanan, R., Mavrovouniotis,

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

184

M., & Siletti, C. (1987). DESIGN-KIT: An object-oriented environment for

process engineering. Computers and Chemical Engineering, 11 (6), 655-674.

Waligura, C. L. & Motard, R. L. (1977). Data management in engineering and

construction projects. Chemical Engineering Progress, 73 (12), pp. 62-70.

Winograd, T. (1979). Beyond programming languages. Communications of the

ACM, 22 (7), 391-401.

Yamashita, Y., & Motard, R. L. (1986). Object-oriented integration in process

engineering computation. Paper presented at the AIChE Spring National

Meeting, New Orleans.

Yamashita, Y. (1986). Object-oriented integration in process engineering compu

tation. Unpublished doctoral proposal, Washington University in St. Louis.

Yamashita, Y. (1987). VSM 1.1 User’s Manual. Department of Chemical Engi

neering, Washington University in St. Louis.

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

Glossary

185

This glossary consists of two sections. The first section consists of abbrevi

ations, acronyms, and titles only. The second section briefly describes various

terms of the R EO methodology.

Abbreviations, Acronyms, and Titles

ASCEND. An acronym for Advanced System for Computations in Engineering

Design. This software system is developed by the Engineering Design Research

Center at Carnegie Mellon University, Pittsburgh, Pennsylvania.

ASPEN. An acronym for Advanced System for Process Engineering, a chemical

process modeling and simulation system.

AP. An abbreviation for ASPEN’s Physical Property Subsystem.

CAE. An abbreviation for Computer Aided Engineering.

CAPE. An abbreviation for Computer Aided Process Engineering.

CAD. An abbreviation for Computer Aided Design.

CAD/CAE. An abbreviation for Computer Aided Design or Computer Aided

Engineering.

CAD/CAM. An abbreviation for Computer Aided Design or Computer Aided

Manufacturing.

CFI. An acronym for CAD Framework Initiative. This is the name of a system

architecture for integration of CAD tools in electronic CAD.

DBMS. An abbreviation for D ata Base Management System.

DESIGN-KIT. Title of a software system developed in the Laboratory for Intelli

gent Systems for Process Engineering at Massachusetts Institute of Technology,

Cambridge.

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

186

DELI. An acronym for Design Environment for Leonardo Investigators and

Inventors.

FORTRAN. An acronym for FORMULA TRANSLATION, a programming lan

guage used mainly for writing scientific and engineering programs.

ICAE. An abbreviation for Integrated Computer Aided Engineering.

ICAPE. An abbreviation for Integrated Computer Aided Process Engineering.

IEEE. An abbreviation for the Institute for Electrical and Electronics Engineers, a

professional society.

IPAD. An acronym for the project titled Integrated Program for Aerospace

Vehicle Design. This project was undertaken by a group of leading aerospace and

CAD/CAM companies in the U.S.

MCC. An abbreviation for Micro Electronics and Computer Technology Corpora

tion. This is a consortium of U.S. companies in the computer industry, and is

located in Austin, Texas.

OMT. An abbreviation for Object Modeling Technique. This is a methodology

developed at General Electric, Corporate Research & Development.

PDF. An acronym for Problem Data File. A Problem Data File is a file that

stores data for a specific simulation problem; it is created and managed by the

ASPEN system.

PID. An abbreviation for Piping and Instrumentation Diagram.

PP. An abbreviation for Physical Property Subsystem. This subsystem of ASPEN

is used for various computations concerned solely with thermophysical properties.

Proto-ICAPE Project. Title of the research project that is the subject of this dis

sertation. It is so named to indicate that it is a prototype ICAPE system.

PROCEDE. A software system for process design developed at the University of

Leeds, U.K.

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

187

REO. Acronym for Reuse for abject-orientation, a methodology that is described

in this dissertation.

REO-TGS. An object-oriented model derived from the TGS subsystem of

ASPEN by following the REO methodology.

TGS. An abbreviation for Table Generation System, a subsystem of the ASPEN

system, for generating tables of thermophysical property data for various mixture

of chemical components.

VLSI. An abbreviation for Very Large Scale Integrated as in VLSI circuits.

VSM. An abbreviation for Virtual Stack Machine. This is a software system, an

object-oriented programming environment, that is used for implementation of

Icape-91 system, a prototype ICAPE, in this research.

Terminology of REO Methodology

CODE. A method to derive object-oriented model that involves direct reuse of

code or compiled program unit. (See page 51.)

Code. A program unit in object language generated by a compiler.

Compiled form. The form of a program unit that is generated by a compiler; it is

expressed in an object language.

Cover. A software system that is subjected to software reuse following the REO

methodology is said to be covered. (See page 40.)

DOCU. A method to derive object-oriented model from the descriptions in the

manual. (See page 57.)

LANG. A set of methods to derive object-oriented model from language descrip

tions. (See pages 42, 43.) The set consists of only the LANG method.

Also, a method to derive object-oriented model from the syntax specifications of

the context-free grammar of a programming language. (See pages 43-47.)

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

188

PROG. A set of methods to derive object-oriented model from program descrip

tions. (See page 47.)

Program unit. A unit of a program that is executable.

SIMP. A set of methods to simplify derived object-oriented models in REO. It

consists of SIMP-1, SIMP-2, SIMP-3, SIMP-4, and SIMP-5 methods. (See pages

58-61.)

SIM P-5. A method to simplify an object-oriented model that is derived by fol

lowing the R EO methodology. In this method, extraneous classes are eliminated.

(See page 61.)

SIM P-4. A method to simplify an object-oriented model that is derived by fol

lowing the R E O methodology. In this method, equivalent classes are eliminated.

(See page 60.)

SIM P-1. A method to simplify an object-oriented model that is derived by fol

lowing the R E O methodology. In this method, a class attribute that serves solely

to identify uniquely an instance of the class is dropped. (See page 59.)

SIM P-3. A method to simplify an object-oriented model that is derived by fol

lowing the R E O methodology. In this method, a class with no attributes is

dropped; instead, one uses simple integral constants or enumerated data types.

(See page 60.)

SIM P-2. A method to simplify an object-oriented model that is derived by fol

lowing the R EO methodology. In this method, a class with only one attribute is

eliminated. (See page 59.)

SORC. A method to derive object-oriented model from the source form of the

program unit. (See page 54.)

Source. The source form of a program unit.

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

www.manaraa.com

8810 1200 367 028

1

Jaimin A. Mehta

D ate of Birth:

VITA

9/29/61

Place of Birth:

U ndergraduate Study:

G raduate Study:

Professional Societies:

Honors/Awards:

Baroda, India

Indian Institute of Technology Bombay, Bombay
B. Tech. 1984

Washington University,

St. Louis, Missouri, 1985-present

D. Sc. expected May, 1992

IEEE Computer Society
American Institute of Chemical Engineers

G raduate Fellowship, Washington University,
1986-present

Runner-up in state-wide Ramanujan M ath

Olympiad, 1979

Scholastic and Professional Graduate Research Assistant, Washington

Experience: University, 1986-present

Teaching Assistant, Washington University,
1985-1986, 1990-1991

Assistant Engineer, Indian Organic Chemicals

Limited, Madras, India, 1984-1985

Publications:

[T] M. R. Blaha, J. A. M ehta and R. L. M otard, “Structure and
Methodology in Engineering Information M anagement,” for the AIChE
Los Angeles Annual Meeting, November 17-22, 1991.

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

88101200367028

www.manaraa.com

190

[H J. A. Mehta, Y. Yamashita and R. L. Motard, “Integration Technology
for Process Design and Simulation,” for the AIChE Orlando Spring
National Meeting, March 18-22,1990.

[U J. A. Mehta, Y. Yamashita and R. L. Motard, “O bject-Oriented
Modeling and Simulation,” for the AIChE Houston Spring National
Meeting, April 2-6, 1989.

[4] J. A Mehta, D. Patakas and R. L. Motard, “Data Management in
Computer Aided Engineering,” for the AIChE New Orleans Spring
National Meeting, March 6-10,1988.

D J. A. M ehta and D. Patakas, “Database Systems: Current Research,”
Technical Report, Center for Computer Aided Process Engineering,
Washington University, Saint Louis, Missouri, January 1988.

® J. A. Mehta, D. Patakas and Y. Yamashita, “A Relational D ata Model
for Aspen flowsheeting system,” Technical Report, Center for Computer
Aided Process Engineering, Washington University, Saint Louis, Missouri,
October 1987.

May, 1992

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

